首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages.

Methodology

Single cell suspensions derived from human breast ‘organoids’ were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres.

Principal Findings

We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24low/CD44low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44high/CD24low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated β-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture.

Conclusions

Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.  相似文献   

2.
The phenotypic diversity of breast carcinoma may be explained by the existence of a sub-population of breast cancer cells, endowed with stem cell-like properties and gene expression profiles, able to differentiate along different pathways. A stem cell-like population of CD44+CD24−/low breast cancer cells was originally identified using cells from metastatic pleural effusions of breast carcinoma patients. We have previously reported that upon in vitro culture as mammospheres under stem cell-like conditions, human MA-11 breast carcinoma cells acquired increased tumorigenicity and lost CD24 expression compared with the parental cell line. We now report that upon passage of MA-11 mammospheres into serum-supplemented cultures, CD24 expression was restored; the rapid increase in CD24 expression was consistent with up-regulation of the antigen, and not with in vitro selection of CD24+ cells. In tumors derived from subcutaneous injection of MA-11 mammospheres in athymic nude mice, 76.1 ± 9.7% of cells expressed CD24, vs. 0.5 ± 1% in MA-11 cells dissociated from mammospheres before injection. The tumorigenicity of sorted CD44+CD24 and CD44+CD24high MA-11 cells was equal. Single cell-sorted CD24 and CD24high MA-11 gave rise in vitro to cell populations with heterogeneous CD24 expression. Also, subcutaneous tumors derived from sorted CD24 sub-populations and single-cell clones had levels of CD24 expression similar to the unsorted cells. To investigate whether the high expression of CD24 contributed to the tumorigenic potential of MA-11 cells, we silenced CD24 by shRNA. CD24 silencing (95%) resulted in no difference in tumorigenicity upon s.c. injection in athymic nude mice compared with mock-transduced MA-11 cells. Since CD24 silencing was maintained in vivo, our data suggest that the level of expression of CD24 is associated with but does not contribute to tumorigenicity. We then compared the molecular profile of the mammospheres with the adherent cell fraction. Gene expression profiling revealed that the increased tumorigenicity of MA-11 mammospheres was associated with changes in 10 signal transduction pathways, including MAP kinase, Notch and Wnt, and increased expression of aldehyde dehydrogenase, a cancer-initiating cell-associated marker. Our data demonstrate that (i) the level of CD24 expression is neither a stable feature of mammosphere-forming cells nor confers tumorigenic potential to MA-11 cells; (ii) cancer-initiating cell-enriched MA-11 mammospheres have activated specific signal transduction pathways, potential targets for anti-breast cancer therapy.  相似文献   

3.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.  相似文献   

4.

Introduction

Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous.

Methods

Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis.

Results

The proportion of cells expressing CD44highCD24low/neg, side population (SP) cells, ALDH1+, CD49fhigh, CD133high, and CD34high differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1+, CD34low, and CD49fhigh suggested properties of transit amplifying cells. Colony formation was higher from ALDH1 and non-SP cells than ALDH1+ and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than “non-stem” cells. Fewer SP cells were needed to form tumors than ALDH1+ cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined.

Conclusions

These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.  相似文献   

5.
目的:探讨MDA-MB-231细胞经无血清培养富集三阴性乳腺癌干细胞,观察再成球、集落形成及CD44+CD24-/low、CXCR4表达。方法:将MDA-MB-231乳腺癌细胞进行微球体培养,取培养第7-9天的微球体,判断干细胞富集的程度;比较不同细胞浓度对癌球细胞成球率影响;流式细胞仪测定CD44+CD24-/low含量;Western blot法分析CXCR4蛋白表达;单个癌球细胞再成球能力;观察癌球与贴壁细胞集落形成。结果:1).在含20 ng/m L EGF,10 ng/m L b FGF,2%b27无血清培养基中可培养三阴性乳腺癌癌球,1×104/m L、2×104/m L、3×104/m L、4×104/m L、5×104/m L细胞浓度癌球细胞成球率分别为(5.61±0.02)%、(3.23±0.54)%、(2.28±0.48)%、(1.05±0.13)%、(0.91±0.01)%,组间比较差异有统计学意义P值均0.05。2).贴壁MDA-MB-231细胞与癌球细胞CD44+CD24-/low含量分别为(38.54±2.00)%VS(66.35±2.06)%,差异有统计学意义P=0.003。3).癌球细胞CXCR4蛋白表达高于贴壁MDA-MB-231细胞,灰度扫描分析差异有统计学意义,P=0.03。4).单个癌球细胞具有再成球能力。5).软琼脂糖集落形成能力癌球需200个细胞即可见集落形成,而贴壁细胞需1 000个MDA-MB-231细胞。结论:1.通过无血清培养可以富集三阴性乳腺癌干细胞,低细胞密度有利于癌球形成。2.癌球中CD44+CD24-/low含量高于贴壁MDA-MB-231细胞。3.CXCR4在癌球中表达高于贴壁MDA-MB-231细胞。  相似文献   

6.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined. In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

7.
Tumors are heterogeneous at the cellular level where the ability to maintain tumor growth resides in discrete cell populations. Floating sphere-forming assays are broadly used to test stem cell activity in tissues, tumors and cell lines. Spheroids are originated from a small population of cells with stem cell features able to grow in suspension culture and behaving as tumorigenic in mice. We tested the ability of eleven common breast cancer cell lines representing the major breast cancer subtypes to grow as mammospheres, measuring the ability to maintain cell viability upon serial non-adherent passage. Only MCF7, T47D, BT474, MDA-MB-436 and JIMT1 were successfully propagated as long-term mammosphere cultures, measured as the increase in the number of viable cells upon serial non-adherent passages. Other cell lines tested (SKBR3, MDA-MB-231, MDA-MB-468 and MDA-MB-435) formed cell clumps that can be disaggregated mechanically, but cell viability drops dramatically on their second passage. HCC1937 and HCC1569 cells formed typical mammospheres, although they could not be propagated as long-term mammosphere cultures. All the sphere forming lines but MDA-MB-436 express E-cadherin on their surface. Knock down of E-cadherin expression in MCF-7 cells abrogated its ability to grow as mammospheres, while re-expression of E-cadherin in SKBR3 cells allow them to form mammospheres. Therefore, the mammosphere assay is suitable to reveal stem like features in breast cancer cell lines that express E-cadherin.  相似文献   

8.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

9.
Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for “live” monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in in vitro screening assays.  相似文献   

10.
Spermatogonial stem and progenitor cells (SSCs) of the testis represent a classic example of adult mammalian stem cells and preserve fertility for nearly the lifetime of the animal. While the precise mechanisms that govern self-renewal and differentiation in vivo are challenging to study, various systems have been developed previously to propagate murine SSCs in vitro using a combination of specialized culture media and feeder cells1-3.Most in vitro forays into the biology of SSCs have derived cell lines from neonates, possibly due to the difficulty in obtaining adult cell lines4. However, the testis continues to mature up until ~5 weeks of age in most mouse strains. In the early post-natal period, dramatic changes occur in the architecture of the testis and in the biology of both somatic and spermatogenic cells, including alterations in expression levels of numerous stem cell-related genes. Therefore, neonatally-derived SSC lines may not fully recapitulate the biology of adult SSCs that persist after the adult testis has reached a steady state.Several factors have hindered the production of adult SSC lines historically. First, the proportion of functional stem cells may decrease during adulthood, either due to intrinsic or extrinsic factors5,6. Furthermore, as with other adult stem cells, it has been difficult to enrich SSCs sufficiently from total adult testicular cells without using a combination of immunoselection or other sorting strategies7. Commonly employed strategies include the use of cryptorchid mice as a source of donor cells due to a higher ratio of stem cells to other cell types8. Based on the hypothesis that removal of somatic cells from the initial culture disrupts interactions with the stem cell niche that are essential for SSC survival, we previously developed methods to derive adult lines that do not require immunoselection or cryptorchid donors but rather employ serial enrichment of SSCs in culture, referred to hereafter as SESC2,3.The method described below entails a simple procedure for deriving adult SSC lines by dissociating adult donor seminiferous tubules, followed by plating of cells on feeders comprised of a testicular stromal cell line (JK1)3. Through serial passaging, strongly adherent, contaminating non-germ cells are depleted from the culture with concomitant enrichment of SSCs. Cultures produced in this manner contain a mixture of spermatogonia at different stages of differentiation, which contain SSCs, based on long-term self renewal capability. The crux of the SESC method is that it enables SSCs to make the difficult transition from self-renewal in vivo to long-term self-renewal in vitro in a radically different microenvironment, produces long-term SSC lines, free of contaminating somatic cells, and thereby enables subsequent experimental manipulation of SSCs.  相似文献   

11.
Hair cells and supporting cells of the mammalian cochlea terminally differentiate during development. Recent in vitro evidence suggests the presence of hair cell progenitors in the postnatal cochlea. Phenotypic properties of these cells and factors that promote their ability to generate spheres in aggregate cultures have not been reported. We define an in vitro system that allows stem/progenitor cells harvested from the early postnatal cochlea to develop into spheres. These spheres contain Abcg2, Jagged1 and Notch1 positive progenitor cells that can divide and generate new hair cell-like cells, i.e. immunopositive for specific hair cell markers, including Myosin VI, Myosin VIIa, Math1 and ability to uptake FM1-43.We demonstrate that reducing Notch signaling with a gamma secretase inhibitor decreases the number of spheres generated following treatment of the stem/progenitor cell cultures. Additionally, activation of Notch by an exogenous soluble form of a Notch ligand, i.e. Jagged1 protein, promotes sphere formation and the sensory potential of cochlear stem/progenitor cells. Our findings suggest that Notch1/Jagged1 signaling plays a role in maintaining a population of Abcg2 sensory stem/progenitor cells in the postnatal cochlea.  相似文献   

12.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined.

In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

13.

Introduction

Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.

Methods

We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.

Results

Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.

Conclusions

Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.  相似文献   

14.

Background

Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC), which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure.

Methods/Findings

To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118–310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118–310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118–310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118–310 treated mice were unable to seed the growth of secondary tumors after transplant.

Conclusions

These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.  相似文献   

15.
The “stem cells” are commonly defined as “cells capable of self-renewal through replication and differentiating into specific lineages”. The mammary gland contains functional stem/progenitor cells. The current study was planned with the objectives to study the differentiation dynamics of Korean Holstein mammary epithelial stem cells (KHMESCs) under the optimum culture conditions. Lineage negative KHMESCs isolated from mammary tissue of lactating cows have shown the typical differentiation dynamics with formation of lobulo–alveolar structures in in vitro culture. This suggests the existence of bipotential mammary epithelial stem cells in the mammary gland. The strong mRNA expression of pluripotency factors indicates stemness, whereas expression of milk protein genes and epithelial cell-specific gene indicate their differentiation capabilities. Further, immunostaining results have shown the differentiation capabilities of KHMESCs into both luminal and basal lineages under the extracellular matrix (ECM, matrigel) free environment. However, under matrigel, the differentiation process was comparatively higher than without matrigel. Immunostaining results also suggested that differentiated cells could secrete milk proteins such as β-casein. To our knowledge, these data represent the first report on the differentiation dynamics and establishment of mammary epithelial stem cells from Korean Holstein with typical stemness properties. It was observed that isolated KHMESCs had normal morphology, growth pattern, differentiation ability, cytogenetic and secretory activity even without ECM. Therefore, it is concluded that established KHMESCs could be used for further studies on Korean Holstein dairy cows related to lactation studies, as non-GMO animal bioreactors and stem cell-based management of bovine mastitis including post-mastitis damage.  相似文献   

16.
Identification of murine mammary stem cells (MaSCs) has been attempted with various in vitro and in vivo assays. While, the in vivo repopulation assay remains as the most definitive assay for MaSC detection, it is expensive, time-consuming, and technically challenging. The in vitro mammosphere assay was considered unreliable because of major concerns about its clonal origin. In the current study, co-culture experiments with mammary cells from fluorescent protein transgenic mice and time-lapse video microscopy revealed that > 90% mammospheres formed from sorted basal epithelial-enriched cells were of clonal origin in terms of stem cell. These basal-cell derived mammospheres were further distinguished morphologically in a 3-dimensional extracellular matrix culture and functionally in the in vivo repopulation assay. Transplant of single mammospheres or the resultant 3-dimensional solid structures into gland-free mammary fat pads yielded a 70% success rate of multilineage mammary gland reconstitution. Thus, this in vitro sphere formation and differentiation assay is a reliable alternative to the in vivo repopulation assay for the study of MaSCs.  相似文献   

17.
Background aimsClinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency.Methods and ResultsUsing an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis.ConclusionsA necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.  相似文献   

18.
Prostate stem cells (P-SCs) are capable of giving rise to all three lineages of prostate epithelial cells, including basal, luminal, and neuroendocrine cells. Multiple methods have been used to identify P-SCs in adult prostates. These include in vivo renal capsule implantation of a single epithelial cell with urogenital mesenchymal cells, in vitro prostasphere and organoid cultures, and lineage tracing with castration-resistant Nkx3.1 expression (CARN), in conjunction with expression of cell type-specific markers. Both organoid culture and CARN tracing show the existence of P-SCs in the luminal compartment. Although prostasphere cells predominantly express basal cell-specific cytokeratin and P63, the lineage of prostasphere-forming cells in the P-SC hierarchy remains to be determined. Using lineage tracing with P63CreERT2, we show here that the sphere-forming P-SCs are P63-expressing cells and reside in the basal compartment. Therefore we designate them as basal P-SCs (P-bSCs). P-bSCs are capable of differentiating into AR+ and CK18+ organoid cells, but organoid cells cannot form spheres. We also report that prostaspheres contain quiescent stem cells. Therefore, the results show that P-bSCs represent stem cells that are early in the hierarchy of overall prostate tissue stem cells. Understanding the contribution of the two types of P-SCs to prostate development and prostate cancer stem cells and how to manipulate them may open new avenues for control of prostate cancer progression and relapse.  相似文献   

19.
20.
As TLRs are expressed by hematopoietic stem and progenitor cells, these receptors may play a role in hematopoiesis in response to pathogens during infection. We showed here that inactivated yeasts and hyphae of Candida albicans induce in vitro the proliferation of purified murine hematopoietic stem and progenitor cells (Linc-Kit+ Sca-1+) as well as their differentiation to lineage positive cells, through a MyD88-dependent pathway. These results indicate that TLR-mediated recognition of C. albicans by hematopoietic stem and progenitor cells may augment the host capability for rapidly replenishing the innate immune system during candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号