首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis.  相似文献   

2.
Small cell lung cancer (SCLC) is a rapidly progressive disease with ultimate poor outcome. SCLC has been shown to interact closely with the stromal and extracellular matrix (ECM) components of the diseased host. ECM consists of type I/IV collagen, laminin, vitronectin, and fibronectin (FN) among others. Herein, we investigated the behavior of a SCLC cell line (NCI-H446) on FN-coated surface. Over a course of 72 h, FN (10 micro g/ml) caused both increased survival and proliferation of NCI-H446 cells. Survival under serum-starved conditions increased 1.44-fold and proliferation in the presence of fetal calf serum increased by 1.30-fold. The phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 reduced both survival and proliferation of NCI-H446 cells (0.48- and 0.27-fold, respectively), even on FN-coated surface. We next determined the effects of FN on cytoskeletal function such as cell motility/morphology and adhesion. Over a course of 24 h, FN reduced aggregation of NCI-H446 cells and induced flattened cellular morphology with neurite-like projections after 1 h, however, in the presence of LY294002, the cells rounded up. Adhesion of NCI-H446 cells also increased with FN (4.47-fold) which was abrogated with LY294002 treatment. This correlated with phosphorylation of the cytoskeletal protein p125FAK, on Tyr397, Tyr861 and Ser843 residues with FN. Even in the presence of LY294002, these serine/tyrosine residues were still phosphorylated on FN-coated surface. In contrast, the focal adhesion protein paxillin was not phosphorylated at Tyr31 with FN. In summary, FN stimulation of SCLC cells leads to enhancement of viability and changes in cytoskeletal function that are partially mediated through the PI3-K pathway.  相似文献   

3.
Small cell lung cancer (SCLC) is distinguished by aggressive growth, early dissemination and a poor prognosis at advanced stage. The remarkably high count of circulating tumor cells (CTCs) of SCLC allowed for the establishment of permanent CTC cultures at our institution for the first time. CTCs are assumed to have characteristics of cancer stem cells (CSCs) and an epithelial-mesenchymal transition (EMT) phenotype, but extravasation of tumors at distal sites is marked by epithelial features. Two SCLC CTC cell lines, namely BHGc7 and BHGc10, as well as SCLC cell lines derived from primary tumors and metastases were analyzed for the expression of pluripotent stem cell markers and growth factors. Expression of E-cadherin and β-Catenin were determined by flow cytometry. Stem cell-associated markers SOX17, α-fetoprotein, OCT-3/4, KDR, Otx2, GATA-4, Nanog, HCG, TP63 and Goosecoid were not expressed in the 2 CTC lines. In contrast, high expression was found for HNF-3β/FOXA2, SOX2, PDX-1/IPF1 and E-cadherin. E-cadherin expression was restricted to the 2 CTCs and 2 cell lines derived from pleural effusion (SCLC26A) and bone metastases (NCI-H526), respectively. Thus, these SCLC CTCs established from extended disease SCLC patients lack expression of stem cell markers which suppress the epithelial phenotype. Instead they express high levels of E-cadherin consistent with a mesenchymal-epithelial transition (MET or EMrT) and form large tumorospheres possibly in response to the selection pressure of first-line chemotherapy. HNF-3β/FOXA2 and PDX-1/IPF1 expression seem to be related to growth factor dependence on insulin/IGF-1 receptors and IGF-binding proteins.  相似文献   

4.

Background aims

TNFR family member glucocorticoid-induced tumor necrosis factor–related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR SCLC cell line (NCI-H82).

Methods

Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs.

Results

Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor.

Conclusions

The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.  相似文献   

5.
The goal of this study was to evaluate the ability of EVO to decrease cell viability and promote cell cycle arrest and apoptosis in small cell lung cancer (SCLC) cells. Lung cancer has the highest incidence and mortality rates among all cancers. Chemotherapy is the primary treatment for SCLC; however, the drugs that are currently used for SCLC are less effective than those used for non-small cell lung cancer (NSCLC). Therefore, it is necessary to develop new drugs to treat SCLC. In this study, the effects of evodiamine (EVO) on cell growth, cell cycle arrest and apoptosis were investigated in the human SCLC cell lines NCI-H446 and NCI-H1688. The results represent the first report that EVO can significantly inhibit the viability of both H446 and H1688 cells in dose- and time-dependent manners. EVO induced cell cycle arrest at G2/M phase, induced apoptosis by up-regulating the expression of caspase-12 and cytochrome C protein, and induced the expression of Bax mRNA and by down-regulating of the expression of Bcl-2 mRNA in both H446 and H1688 cells. However, there was no effect on the protein expression of caspase-8. Taken together, the inhibitory effects of EVO on the growth of H446 and H1688 cells might be attributable to G2/M arrest and subsequent apoptosis, through mitochondria-dependent and endoplasmic reticulum stress-induced pathways (intrinsic caspase-dependent pathways) but not through the death receptor-induced pathway (extrinsic caspase-dependent pathway). Our findings suggest that EVO is a promising novel and potent antitumor drug candidate for SCLC. Furthermore, the cell cycle, the mitochondria and the ER stress pathways are rational targets for the future development of an EVO delivery system to treat SCLC.  相似文献   

6.
目的:探讨小细胞肺癌(SCLC)组织和小细胞肺癌细胞(H446)中肌糖蛋白-C(TN-C)的表达及STAT3 对TN-C表达的影响。 方法:应用免疫组化法检测58 例小细胞肺癌和17 例癌旁正常组织中TN-C 的表达水平,应用RT-PCR和Western blotting 法检测 STAT-siRNA和STAT3 过表达的H446 细胞中TN-C 的表达水平。结果:(1)小细胞肺癌组织中TN-C 的表达水平显著高于癌旁正 常组织(P<0.05);(2)在H446细胞中,TN-C 和STAT3 均呈现高表达;(3)STAT3-siRNA 处理的H446 细胞中STAT3 和TN-C 的表 达均显著降低(P<0.05),而STAT3 过表达的H446 细胞中STAT3 和TN-C 的表达均显著上调(P<0.05)。结论:TN-C 在小细胞肺癌 中的表达上调,可能受到STAT3 的调控。  相似文献   

7.
8.
目的:研究二烯丙基二硫(diallyldisulfide,DADS)对人小细胞肺癌NCI.H446细胞增殖的抑制作用,并探讨其作用机制。方法:体外培养NCI-H446细胞,采用MTT、细胞计数实验方法检测DADS抑制NCI—H446细胞增殖;通过HE染色和AO—EB荧光染色方法,观察DADS处理后NCI—H446细胞的形态学改变。结果:MTT结果显示:DADS作用于NCI—H446细胞48h后,代谢MTT的能力明显降低,显示出较强的细胞毒性反应,IC50值介于20-40μg/ml之间。细胞计数结果表明:DADS作用于NCI—H446细胞后,随DADS浓度增加NCI—H446细胞倍增时间延长。HE染色显示:NCI—H446细胞经DADS处理24h后,与对照组相比,细胞体积变小,胞浆丰富,细胞核变小,染色变淡。AO-EB荧光染色显示:NCI-H446细胞经DADS处理24h后,与对照组相比,细胞皱缩、呈圆形,胞质黄色或橘红色,细胞核或细胞质内可见致密浓染的黄绿色或橘红色荧光,并可见橘红色碎片且随DADS浓度增加,随DADS浓度增加细胞密度逐渐减少。结论:DADS能抑制体外培养的NCI—H446细胞增殖,作用效果与药物浓度及作用时间相关。  相似文献   

9.
Previous studies suggested that cancer cells resemble neural stem/progenitor cells in regulatory network, tumorigenicity, and differentiation potential, and that neural stemness might represent the ground or basal state of differentiation and tumorigenicity. The neural ground state is reflected in the upregulation and enrichment of basic cell machineries and developmental programs, such as cell cycle, ribosomes, proteasomes, and epigenetic factors, in cancers and in embryonic neural or neural stem cells. However, how these machineries are concertedly regulated is unclear. Here, we show that loss of neural stemness in cancer or neural stem cells via muscle-like differentiation or neuronal differentiation, respectively, caused downregulation of ribosome and proteasome components and major epigenetic factors, including PRMT1, EZH2, and LSD1. Furthermore, inhibition of PRMT1, an oncoprotein that is enriched in neural cells during embryogenesis, caused neuronal-like differentiation, downregulation of a similar set of proteins downregulated by differentiation, and alteration of subcellular distribution of ribosome and proteasome components. By contrast, PRMT1 overexpression led to an upregulation of these proteins. PRMT1 interacted with these components and protected them from degradation via recruitment of the deubiquitinase USP7, also known to promote cancer and enriched in embryonic neural cells, thereby maintaining a high level of epigenetic factors that maintain neural stemness, such as EZH2 and LSD1. Taken together, our data indicate that PRMT1 inhibition resulted in repression of cell tumorigenicity. We conclude that PRMT1 coordinates ribosome and proteasome activity to match the needs for high production and homeostasis of proteins that maintain stemness in cancer and neural stem cells.  相似文献   

10.
目的:探讨小细胞肺癌(SCLC)组织和小细胞肺癌细胞(H446)中肌糖蛋白-C(TN-C)的表达及STAT3对TN-C表达的影响。方法:应用免疫组化法检测58例小细胞肺癌和17例癌旁正常组织中TN-C的表达水平,应用RT-PCR和Western blotting法检测STAT-siRNA和STAT3过表达的H446细胞中TN-C的表达水平。结果:(1)小细胞肺癌组织中TN-C的表达水平显著高于癌旁正常组织(P〈0.05);(2)在H446细胞中,TN-C和STAT3均呈现高表达;(3)STAT3-siRNA处理的H446细胞中STAT3和TN-C的表达均显著降低(P〈0.05),而STAT3过表达的H446细胞中STAT3和TN-C的表达均显著上调(P〈0.05)。结论:TN-C在小细胞肺癌中的表达上调,可能受到STAT3的调控。  相似文献   

11.
Li B  Zhao WD  Tan ZM  Fang WG  Zhu L  Chen YH 《FEBS letters》2006,580(17):4252-4260
Small cell lung cancer (SCLC) cells migration across human brain microvascular endothelial cells (HBMECs) is an essential step of brain metastases. Here we investigated signalling pathways in HBMECs contributing to the process. Inhibition of endothelial Rho kinase (ROCK) with Y27632 and overexpression of ROCK dominant-negative mutant prevented SCLC cells, NCI-H209, transendothelial migration and the concomitant changes of tight junction. Conversely, inhibition of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) had no effects. Furthermore, endothelial RhoA protein was activated during NCI-H209 cells transendothelial migration. Rho/ROCK participated in NCI-H209 cells transendothelial migration through regulating actin cytoskeleton reorganization. These results suggested that Rho/ROCK was required for SCLC cells transendothelial migration.  相似文献   

12.
13.
It has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.Subject terms: Cancer stem cells, Cancer stem cells  相似文献   

14.
Moody TW  Leyton J  John C 《Life sciences》2000,66(20):1979-1986
The effects of sigma ligands on small cell lung cancer (SCLC) cells were investigated. 125I-N-(2-(piperidino)ethyl)-2-iodobenazmide (2-IBP) bound with high affinity to SCLC cell line NCI-H209 and NCI-N417. Specific 125I-2-IBP binding was inhibited with high affinity by ifendipine, haloperidol, (2-piperidinyl-aminoethyl)-4-iodobenzamide (IPAB) and 1,3-ditolylguanidine (DTG) with IC50 values of 3, 10, 15 and 90 nM respectively. In vitro, 10 microM 2-IBP, haloperidol or IPAB inhibited NCI-N417 proliferation using a MTT or clonogenic assay. In vivo, 4 mg/kg IPAB or 2-IBP inhibited NCI-N417 xenograft proliferation. 125I-2-IBP localized to the SCLC tumors after subcutaneous injection. These results suggest that sigma ligands may be utilized to localize and inhibit the proliferation of SCLC tumors.  相似文献   

15.
New modalities of treatment for small-cell lung cancer (SCLC) are needed, because the majority of patients continue to die of disseminated disease despite an initial response to conventional chemotherapy. Abnormal surface expression of the neural-cell adhesion molecule (NCAM) has been noted to be highly associated with SCLC. We examined the ability and efficiency of a streptavidin-Protein A (ST-PA) fusion protein complexed with an anti-NCAM monoclonal antibody (Mab) to transfer biotinylated beta-galactosidase into human SCLC cell lines NCI-H69, NCI-H526, and NCI-H446. When the surface molecule NCAM was targeted with this system, more than 99% of the targeted cells internalized and exhibited beta-galactosidase activity. In addition, we evaluated cytotoxic activity against SCLC lines NCI-H69 and NCI-H526 by efficient delivery of biotinylated glucose oxidase using the same ST-PA/anti-NCAM Mab complex. Cytotoxicity of the transduced cells (SCLC) was 10-fold and 100-fold greater, respectively, than the glucose oxidase control. This system could be widely applied for specific therapy of cancer cells by targeting unique surface molecules (antigens) using the corresponding Mab/ST-PA complex to transfer a variety of effector molecules; e.g., immunotoxic compounds, into target cells with a high degree of efficiency and specificity.  相似文献   

16.
Yang CL  Ma YG  Xue YX  Liu YY  Xie H  Qiu GR 《DNA and cell biology》2012,31(2):139-150
Curcumin (diferuloylmethane), an active component of the spice turmeric, induces apoptosis in several types of malignancies. However, little is known about its anticancer activity in small cell lung cancer (SCLC). SCLC represents a highly malignant and particularly aggressive form of cancer, with early and widespread metastases and a poor prognosis. In this study, we found that curcumin does not activate caspase-8 cleavage or alter the expression of apoptotic receptors FAS and TRAIL in NCI-H446 cells, suggesting that curcumin-induced apoptosis is not associated with death receptor-mediated pathways in these cells. Instead, curcumin caused apoptosis by increasing Bax expression while decreasing the expression of Bcl-2 and Bcl-xL. Curcumin induced a rapid decrease in mitochondrial membrane potential and the release of cytochrome c into the cytosol, followed by activation of caspase-9 and caspase-3. In addition, curcumin-induced apoptosis was accompanied by an increase of intracellular reactive oxygen species (ROS) level. These results indicated that a ROS-mediated mitochondrial pathway played an important role in the process of curcumin-induced apoptosis of human SCLC NCI-H446 cells.  相似文献   

17.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

18.
Lung mesenchymal stem cells (L-MSCs) characterized by plasticity, reduced relative immune privilege and high anti-fibrosis characteristics play the crucial role in lung tissue regenerative processes. However, up to date, the multi-differentiation potentials and application values of L-MSCs are still uncertain. In the current study, the Small Tailed Han Sheep embryo L-MSCs line from 12 samples, stocking 124 cryogenically-preserved vials, was successfully established by using primary culture and cell cryopreservation techniques. Isolated L-MSCs were morphologically consistent with fibroblasts, could be passaged for at least 18 passages and more than 91.8% of cells were diploid (2n = 54) analyze by G-banding. The majority of cells were in the G0/G1 phase (70.5–91.2%), and the growth curves were all typically sigmoidal. Moreover, L-MSCs were found to express pluripotent genes Oct4, Nanog and MSCs-associated genes β-integrin, CD29, CD44, CD71, CD73 and CD90, while the expressions of hematopoietic cell markers CD34 and CD45 were negative. In addtion, the L-MSCs could be differentiated into cells of three layers with induction medium in vitro, which confirmed their multilineage differentiation potential. The secretion of urea and ALB showed the differentiated hepatocytes still possessed the detoxification function. These results indicated that the isolated L-MSCs displayed typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their maintenance of stemness and their proliferation in vitro.  相似文献   

19.
Matrix stiffness is an essential physical microenvironment in solid cancer. However, its influence on cancer stemness still remains elusive. Colorectal cancer (CRC) cell line HCT-116 was cultured in the matrix with various stiffness. The siYAP was applied to detect the changes of stemness markers. The cancer stemness markers, Yes-associated protein (YAP), Lamin A/C and downstream protein molecules, and their activation were measured after the treatment with anti-β1-integrin and FAK inhibitors. In CRC tissue samples, collagen deposition and the expression of α-SMA and CD133 were detected. The study found that the expression level of stemness markers and Lamin A/C increased as the matrix stiffness raised and was regulated by YAP activation in CRC stem cells. Inhibition of β1-integrin and FAK activation in a high stiffness cell culture medium significantly decreased the activation of YAP, PI3K, and AKT. Collagen was highly deposited in the CRC invasive tumor front (ITF), and the expression of CD133 was higher in ITF compared with normal tissue and the tumor cells. Moreover, the expression level of α-SMA was positively correlated with CD133 expression level. Together, our results suggest that activation of YAP in CRC plays an important role in the promotion of cancer stem cell properties by extracellular matrix stiffness in CRC.  相似文献   

20.
The binding of a radiolabeled bombesin analogue to human small cell lung cancer (SCLC) cell lines was investigated. (125I-Tyr4)bombesin bound with high affinity (Kd = 0.5 nM) to a single class of sites (2,000/cell) using SCLC line NCI-H446. Binding was reversible, saturable and specific. The pharmacology of binding was investigated using NCI-H466 and SCLC line NCI-H345. Bombesin and structurally related peptides, such as gastrin releasing peptide (GRP), but not other peptides, such as substance P or vasopressin, inhibited high affinity (125I-Tyr4)BN binding activity. Finally, the putative receptor, a 78,000 dalton polypeptide, was identified by purifying radiolabeled cell lysates on bombesin or GRP affinity resins and then displaying the bound polypeptides on sodium dodecylsulfate polyacrylamide gels. Because SCLC both produces bombesin/GRP-like peptides and contains high affinity receptors for these peptides, they may function as important autocrine regulatory factors for human SCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号