首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background

Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan.

Methods and Principle Findings

A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and E-selectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman’s correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria.

Conclusion

The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF-α, however, cytokine-mediated endothelial activation pathway is not clearly demonstrated as a mechanism of pathogenesis in complicated P.vivax malaria cases from Pakistan.  相似文献   

3.

Objective

The etiology and pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS) are unclear. Chronic inflammation is considered the main pathology of IC/BPS. This study measured the serum c-reactive protein (CRP), nerve growth factor (NGF) and pro-inflammatory cytokine/chemokine interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-8 expression in patients with IC/BPS to elucidate the involvement of systemic inflammation in IC/BPS.

Methods

Serum samples were collected from 30 IC/BPS patients and 26 control subjects. The concentrations of serum nerve growth factor (NGF), IL-1β, IL-6, TNF-α, and IL-8 were quantified using a bead-based, human serum adipokine panel kit. Serum C-reactive protein (CRP) was also assessed. Differences of serum CRP, NGF, IL-1β, IL-6, TNF-α, and IL-8 levels between the IC/BPS patients and controls were compared, and correlations between CRP and pro-inflammatory cytokines and chemokine were also evaluated.

Results

The results showed that CRP level (p = 0.031), NGF (p = 0.015) and pro-inflammatory cytokines/chemokine IL-1β, IL-6, TNF-α, and IL-8 levels were significantly higher in the patients with IC/BPS than among controls (all p<0.001). Significant associations were observed between IL-1β and IL-8 (p<0.001), IL-6 and CRP (p = 0.01), IL-6 and IL-8 (p = 0.02), and IL-6 and TNF-α (p = 0.03).

Conclusion

Increased pro-inflammatory cytokines/chemokine (IL-1β, IL-6, TNF-α, and IL-8) expression in the sera of IC/BPS patients implies not only mast cell activation, but also that other inflammatory mediators play important roles in the pathogenesis of IC/BPS. Thus, for some patients, IC/BPS is considered a chronic inflammatory disease.  相似文献   

4.

Objective

Recently, salusin-β has been reported to have pro-atherosclerotic effects, but salusin-α has anti-atherosclerotic effects. Our previous study has shown that salusin-β but not salusin-α promotes vascular inflammation in apoE-deficient mice. However, the underlying mechanism remains unknown. In this study, we observed the effect of salusins on inflammatory responses and the MAPK-NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs).

Methods and Results

HUVECs were incubated with different concentrations of salusin-α and salusin-β. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined using enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) were quantified using quantitative real-time polymerase chain reaction (PCR). The protein expressions of VCAM-1, MCP-1, I-κBα, NF-κB, p-JNK and p-p38 MAPK were measured using western blotting analysis. Our results showed that in HUVECs, salusin-β could up-regulate the levels of IL-6, TNF-α, VCAM-1 and MCP-1, promote I-κBα degradation and NF-κB activation, and increase the phosphorylation of JNK and p38 MAPK. These effects could be inhibited by p38 MAPK inhibitor SB203580 and/or JNK inhibitor SP600125. In contrast, salusin-α could selectively decrease VCAM-1 protein, but did not show any effect on the expressions of VCAM-1 mRNA, TNF-α, IL-6, MCP-1, I-κBα, NF-κB, p-JNK or p-p38 MAPK.

Conclusion

Salusin-β was able to promote inflammatory responses in HUVECs via the p38 MAPK-NF-κB and JNK-NF-κB pathways. In contrast, salusin-α failed to show any significant effects on the inflammatory responses in HUVECs. These results provide further insight into the mechanisms behind salusins in vascular inflammation and offer a potential target for the prevention and treatment of atherosclerosis.  相似文献   

5.

Background:

We investigated the effects of Withania somnifera root (WS) on insulin resistance, tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) in fructose-fed rats.

Methods:

Forty-eight Wistar-Albino male rats were randomly divided into four groups (n=12); Group I as control, Group II as sham-treated with WS by 62.5mg/g per diet, Group III fructose-fed rats received 10%W/V fructose, and Group IV fructose- and WS-fed rats. After eight weeks blood samples were collected to measure glucose, insulin, IL-6, and TNF-α levels in sera.

Results:

Blood glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-R), IL-6, and TNF-α levels were all significantly greater in the fructose-fed rats than in the controls. Treatment with WS significantly (P < 0.05) inhibited the fructose-induced increases in glucose, insulin, HOMA-R, IL-6, and TNF-α.

Conclusion:

Our data suggest that WS normalizes hyperglycemia in fructose-fed rats by reducing inflammatory markers and improving insulin sensitivity.Key Words: Withania somnifera, Insulin resistance, IL-6, TNF- α  相似文献   

6.

Introduction

Inflammatory cytokines play a key role in the pathogenesis of joint diseases such as rheumatoid arthritis (RA). Current therapies target mainly tumor necrosis factor α (TNF-α) as this has proven benefits. However, a large number of patients do not respond to or become resistant to anti-TNF-α therapy. While the role of TNF-α in RA is quite evident, the role of TNF-β, also called lymphotoxin-α (LT-α), is unclear. In this study we investigated whether TNF-β and its receptor play a role in chondrocytes in the inflammatory environment.

Methods

An in vitro model of primary human chondrocytes was used to study TNF-β-mediated inflammatory signaling.

Results

Cytokine-induced inflammation enhances TNF-β and TNF-β-receptor expression in primary human chondrocytes accompanied by the up-regulation of inflammatory (cyclooxygenase-2), matrix degrading (matrix metalloproteinase-9 and -13) and apoptotic (p53, cleaved caspase-3) signaling pathways, all known to be regulated by NF-κB. In contrast, anti-TNF-β, similar to the natural NF-κB inhibitor (curcumin, diferuloylmethane) or the knockdown of NF-κB by using antisense oligonucleotides (ASO), suppressed IL-1β-induced NF-κB activation and its translocation to the nucleus, and abolished the pro-inflammatory and apoptotic effects of IL-1β. This highlights, at least in part, the crucial role of NF-κB in TNF-β-induced-inflammation in cartilage, similar to that expected for TNF-α. Finally, the adhesiveness between TNF-β-expressing T-lymphocytes and the responding chondrocytes was significantly enhanced through a TNF-β-induced inflammatory microenvironment.

Conclusions

These results suggest for the first time that TNF-β is involved in microenvironment inflammation in chondrocytes during RA parallel to TNF-α, resulting in the up-regulation of NF-κB signaling and activation of pro-inflammatory activity.  相似文献   

7.

Purpose

To investigate the effects of icariin, a major constituent of flavonoids isolated from the herb Epimedium, on cigarette smoke (CS) induced inflammatory responses in vivo and in vitro.

Methods

In vivo, BALB/c mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with icariin (25, 50 and 100 mg/kg) or dexamethasone (1 mg/kg). In vitro, A549 cells were incubated with icariin (10, 50 and 100 µM) followed by treatments with CSE (2.5%).

Results

We found that icariin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9 in both the serum and BALF of CS-exposed mice and decreasing production of TNF-α and IL-8 in the supernatant of CSE-exposed A549 cells. Icariin also showed properties in inhibiting the phosphorylation of NF-κB p65 protein and blocking the degradation of IΚB-α protein. Further studies revealed that icariin administration markedly restore CS-reduced GR protein and mRNA expression, which might subsequently contribute to the attenuation of CS-induced respiratory inflammatory response.

Conclusion

Together these results suggest that icariin has anti-inflammatory effects in cigarette smoke induced inflammatory models in vivo and in vitro, possibly achieved by suppressing NF-κB activation and modulating GR protein expression.  相似文献   

8.

Introduction

It is well known that neutrophils play very important roles in the development of rheumatoid arthritis (RA) and interleukin (IL)-8 is a critical chemokine in promoting neutrophil migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in RA promotes FLS proliferation and Th17 cell differentiation, thus Cyr61 is a pro-inflammatory factor in RA pathogenesis. In this study, we explored the role of Cyr61 in neutrophil migration to the joints of RA patients.

Methods

RA FLS were treated with Cyr61 and IL-8 expression was analyzed by real-time PCR and ELISA. The migration of neutrophils recruited by the culture supernatants was determined by the use of a chemotaxis assay. Mice with collagen-induced arthritis (CIA) were treated with anti-Cyr61 monoclonal antibodies (mAb), or IgG1 as a control. Arthritis severity was determined by visual examination of the paws and joint destruction was determined by hematoxylin-eosin (H&E) staining. Signal transduction pathways in Cyr61-induced IL-8 production were investigated by real-time PCR, western blotting, confocal microscopy, luciferase reporter assay or chromatin immunoprecipitation (ChIP) assay.

Results

We found that Cyr61 induced IL-8 production by RA FLS in an IL-1β and TNF-α independent pathway. Moreover, we identified that Cyr61-induced IL-8-mediated neutrophil migration in vitro. Using a CIA animal model, we found that treatment with anti-Cyr61 mAb led to a reduction in MIP-2 (a counterpart of human IL-8) expression and decrease in neutrophil infiltration, which is consistent with an attenuation of inflammation in vivo. Mechanistically, we showed that Cyr61 induced IL-8 production in FLS via AKT, JNK and ERK1/2-dependent AP-1, C/EBPβ and NF-κB signaling pathways.

Conclusions

Our results here reveal a novel role of Cyr61 in the pathogenesis of RA. It promotes neutrophil infiltration via up-regulation of IL-8 production in FLS. Taken together with our previous work, this study provides further evidence that Cyr61 plays a key role in the vicious cycle formed by the interaction between infiltrating neutrophils, proliferated FLS and activated Th17 cells in the development of RA.  相似文献   

9.

Introduction

Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).

Methods

Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.

Results

Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.

Conclusions

Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.  相似文献   

10.

Background

An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease.

Methods

Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested.

Results

Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses.

Conclusions

CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB.  相似文献   

11.

Introduction

Anemia of inflammation (AI) is a common complication of rheumatoid arthritis (RA) and has a negative impact on RA symptoms and quality of life. Upregulation of hepcidin by inflammatory cytokines has been implicated in AI. In this study, we evaluated and compared the effects of IL-6 and TNF-α blocking therapies on anemia, disease activity, and iron-related parameters including serum hepcidin in RA patients.

Methods

Patients (n = 93) were treated with an anti-IL-6 receptor antibody (tocilizumab) or TNF-α inhibitors for 16 weeks. Major disease activity indicators and iron-related parameters including serum hepcidin-25 were monitored before and 2, 4, 8, and 16 weeks after the initiation of treatment. Effects of tocilizumab and infliximab (anti-TNF-α antibody) on cytokine-induced hepcidin expression in hepatoma cells were analyzed by quantitative real-time PCR.

Results

Anemia at base line was present in 66% of patients. Baseline serum hepcidin-25 levels were correlated positively with serum ferritin, C-reactive protein (CRP), vascular endothelial growth factor (VEGF) levels and Disease Activity Score 28 (DAS28). Significant improvements in anemia and disease activity, and reductions in serum hepcidin-25 levels were observed within 2 weeks in both groups, and these effects were more pronounced in the tocilizumab group than in the TNF-α inhibitors group. Serum hepcidin-25 reduction by the TNF-α inhibitor therapy was accompanied by a decrease in serum IL-6, suggesting that the effect of TNF-α on the induction of hepcidin-25 was indirect. In in vitro experiments, stimulation with the cytokine combination of IL-6+TNF-α induced weaker hepcidin expression than did with IL-6 alone, and this induction was completely suppressed by tocilizumab but not by infliximab.

Conclusions

Hepcidin-mediated iron metabolism may contribute to the pathogenesis of RA-related anemia. In our cohort, tocilizumab was more effective than TNF-α inhibitors for improving anemia and normalizing iron metabolism in RA patients by inhibiting hepcidin production.  相似文献   

12.
13.

Background

Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα).

Methodology/Principal Findings

Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides.

Conclusions/Significance

Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.  相似文献   

14.

Background

Toll-like receptors (TLRs) play a pivotal role in the defense against invading pathogens by detecting pathogen-associated molecular patterns (PAMPs). TLR4 recognizes lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, resulting in the induction and secretion of proinflammatory cytokines such as TNF-α and IL-6. The WW domain containing E3 ubiquitin protein ligase 1 (WWP1) regulates a variety of cellular biological processes. Here, we investigated whether WWP1 acts as an E3 ubiquitin ligase in TLR-mediated inflammation.

Methodology/Results

Knocking down WWP1 enhanced the TNF-α and IL-6 production induced by LPS, and over-expression of WWP1 inhibited the TNF-α and IL-6 production induced by LPS, but not by TNF-α. WWP1 also inhibited the IκB-α, NF-κB, and MAPK activation stimulated by LPS. Additionally, WWP1 could degrade TRAF6, but not IRAK1, in the proteasome pathway, and knocking down WWP1 reduced the LPS-induced K48-linked, but not K63-linked, polyubiquitination of endogenous TRAF6.

Conclusions/Significance

We identified WWP1 as an important negative regulator of TLR4-mediated TNF-α and IL-6 production. We also showed that WWP1 functions as an E3 ligase when cells are stimulated with LPS by binding to TRAF6 and promoting K48-linked polyubiquitination. This results in the proteasomal degradation of TRAF6.  相似文献   

15.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   

16.

Introduction

Interleukin-22 (IL-22) is a cytokine of IL-10 family with significant proliferative effect on different cell lines. Immunopathological role of IL-22 has been studied in rheumatoid arthritis (RA) and psoriasis. Here we are reporting the functional role of IL-22 in the inflammatory and proliferative cascades of psoriatic arthritis (PsA).

Method

From peripheral blood and synovial fluid (SF) of PsA (n = 15), RA (n = 15) and osteoarthritis (OA, n = 15) patients, mononuclear cells were obtained and magnetically sorted for CD3+ T cells. Fibroblast like synoviocytes (FLS) were isolated from the synovial tissue of PsA (n = 5), RA (n = 5) and OA (n = 5) patients. IL-22 levels in SF and serum were measured by enzyme linked immunosorbent assay (ELISA). Proliferative effect of human recombinant IL-22 (rIL-22) on FLS was assessed by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole) and CFSE dilution (Carboxyfluorescein succinimidyl ester) assays. Expression of IL-22Rα1 in FLS was determined by western blot.

Results

IL-22 levels were significantly elevated in SF of PsA patients (17.75 ± 3.46 pg/ml) compared to SF of OA (5.03 ± 0.39 pg/ml), p < 0.001. In MTT and CFSE dilution assays, rIL-22 (MTT, OD: 1.27 ± 0.06) induced significant proliferation of FLS derived from PsA patients compared to media (OD: 0.53 ± 0.02), p < 0.001. In addition, rIL-22 induced significantly more proliferation of FLS in presence of TNF-α. IL-22Rα1 was expressed in FLS of PsA, RA and OA patients. Anti IL-22R antibody significantly inhibited the proliferative effect of rIL-22. Further we demonstrated that activated synovial T cells of PsA and RA patients produced significantly more IL-22 than those of OA patients.

Conclusion

SF of PsA patients have higher concentration of IL-22 and rIL-22 induced marked proliferation of PsA derived FLS. Moreover combination of rIL-22 and TNF-α showed significantly more proliferative effect on FLS. IL-22Rα1 was expressed in FLS. Successful inhibition of IL-22 induced FLS proliferation by anti IL-22R antibody suggests that blocking of IL-22/IL-22R interaction may be considered as a novel therapeutic target for PsA.  相似文献   

17.
Sadik CD  Kim ND  Alekseeva E  Luster AD 《PloS one》2011,6(10):e26342

Objective

To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serum-transfer model.

Methods

Wild-type and Il17ra−/− mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR.

Results

Il17ra−/− mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/CXCL5 MIP-1γ/CCL9, MCP-3/CCL7, MIP-3α/CCL20, the cytokines IL-1β, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra−/− mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra−/− mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro.

Conclusions

IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likely mediated by direct activation of synovial fibroblasts by IL-17RA to produce multiple inflammatory mediators, including chemokines active on neutrophils. Therefore, interrupting IL-17RA signaling maybe a promising pharmacological target for the treatment of inflammatory arthritis.  相似文献   

18.

Background

Hand-food-mouth disease (HFMD) cases can be fatal. These cases develop rapidly, and it is important to predict the severity of HFMD from mild to fatal and to identify risk factors for mild HFMD. The objective of this study was to correlate the levels of serum inflammatory cytokines with HFMD severity.

Methods

This study was designed as a nested serial case-control study. The data collected included general information, clinical symptoms and signs, laboratory findings and serum cytokine levels.

Results

The levels of IL-4, IL-6, IL-10, TNF-α and IFN-γ in patients with severe HFMD were significantly higher than in mild patients during the 2nd to 5th day after disease onset. The levels of IL-4, IL-6, IL-10 and IFN-γ increased from the 2nd day to the 4th day and later decreased. The levels of TNF-α were high on the first two days and subsequently decreased. The changes of IL-10, TNF-α and IFN-γ in the controls were similar for all cases. The levels of IL-4, IL-6 and IL-17 in the controls were not significantly different with the progression of HFMD.

Conclusions

Our findings indicate that the IL-4, IL-6, IL-10, TNF-α and IFN-γ levels correlate with HFMD severity.  相似文献   

19.

Background

While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.

Methods

Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.

Results

Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.

Conclusion

Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.  相似文献   

20.
Chronic and persistent inflammation is a well-known carcinogenesis promoter. Hepatocellular carcinoma (HCC) is one of the most common inflammation-associated cancers; most HCCs arise in the setting of chronic inflammation and hepatic injury. Both NF-κB and STAT3 are important regulators of inflammation. Centrosomal P4.1-associated protein (CPAP), a centrosomal protein that participates primarily in centrosome functions, is overexpressed in HCC and can increase TNF-α-mediated NF-κB activation and IL-6-induced STAT3 activation. A transgenic (Tg) mouse model with hepatocyte-specific CPAP expression was established to investigate the physiological role of CPAP in hepatocarcinogenesis. Obvious inflammatory cell accumulation and fatty change were observed in the livers of CPAP Tg mice. The alanine aminotransferase (ALT) level and the expression levels of inflammatory genes, such as IL-6, IL-1β and TNF-α, were higher in CPAP Tg mice than in wild type (WT) mice. High-dose/short-term treatment with diethylnitrosamine (DEN) increased the ALT level, proinflammatory gene expression levels, and STAT3 and NF-κB activation in CPAP Tg mice; low-dose/long-term DEN treatment induced more severe liver tumor formation in CPAP Tg mice than in WT mice. CPAP can increase the expression of chemokine (C-C motif) ligand 16 (CCL-16), an important chemotactic cytokine, in human hepatocytes. CCL-16 expression is positively correlated with CPAP and TNF-α mRNA expression in the peritumoral part of HCC. In summary, these results suggest that CPAP may promote hepatocarcinogenesis through enhancing the inflammation pathway via increasing the expression of CCL-16.Subject terms: Liver cancer, Tumour immunology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号