首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Infection of AGMK or CV-1 cells by the early simian virus 40 mutant tsA58 at the permissive temperature (32 degrees C) followed by a shift to the nonpermissive temperature (41 degrees C) caused a substantial decrease in the levels of late viral RNA in the cytoplasm of AGMK cells but not CV-1 cells. At the translational level, this depression of late viral RNA levels was reflected by a decrease in late viral protein synthesis. Thus, in AGMK cells, an early region gene product (presumably large T-antigen) appeared to be continuously required for efficient expression of the late viral genes. In contrast, late simian virus 40 gene expression, once it is initiated in CV-1 cells, continued efficiently regardless of the tsA mutation. The difference in expression of the late simian virus 40 genes in these tsA mutant-infected monkey kidney cell lines may reflect a difference in host cell proteins which regulate viral gene expression in conjunction with early viral proteins.  相似文献   

5.
6.
The kinetics of host cellular DNA stimulation by simian virus 40 (SV40) tsA58 infection was studied by flow microfluorometry and autoradiography in two types of productively infected monkey kidney cells (AGMK, secondary passage, and the TC-7 cell line). Prior to infection, the cell populations were maintained predominantly in G0-G1 hase of the cell cycle by low (0.25%) serum concentration. Infection of TC-7 or AGMK cells by wild-type SV40, viable deletion mutant dl890, or by SV40 tsA58 at 33 degrees C induced cells through S phase after which they were blocked with a 4N DNA content in the G2 phase. The infection of TC-7 cells by tsA58 at 41 degrees C, which was a nonpermissive temperature for viral DNA replication, induced a round of cell DNA synthesis in approximately 30% of the cell population. These cells proceeded through S phase but then re-entered the G1 resting state. In contrast, infection of AGMK cells by tsA58 at 41 degrees C induced DNA synthesis in approximately 50% of the cells, but this population remained blocked in the G2 phase. These results indicate that the mitogenic effect of the A gene product upon cellular DNA is more heat resistant than its regulating activity on viral DNA synthesis and that the extent of induction of cell DNA synthesis by the A gene product may be influenced by the host cell.  相似文献   

7.
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.  相似文献   

8.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

9.
10.
11.
12.
13.
Infection of quiescent CV-1 cells with simian virus 40 mutant tsA30 at 37 degrees C resulted in the induction of two rounds of cellular DNA synthesis in T-antigen-positive cells, as previously described for wild-type simian virus 40. Following infection with tsA30 at 40.5 degrees C, T-antigen-positive cells were induced into S phase and reached a diploid G2 DNA content; however, a second S phase was not initiated. The failure of tsA30-infected CV-1 cells to enter tetraploid S phase at 40.5 degrees C identifies a T-antigen function, distinct from T-antigen functions responsible for stimulation of cell DNA synthesis, which is required for initiation of a second round of DNA synthesis without mitosis.  相似文献   

14.
15.
Translational regulation of SV40 early mRNA defines a new viral protein   总被引:20,自引:0,他引:20  
K Khalili  J Brady  G Khoury 《Cell》1987,48(4):639-645
  相似文献   

16.
17.
Simian Virus 40 Deoxyribonucleic Acid Synthesis: the Viral Replicon   总被引:236,自引:137,他引:99       下载免费PDF全文
Three temperature-sensitive (ts) mutants of simian virus 40 (SV40) in complementation group A (tsA7, tsA28, tsA30) have been isolated and characterized in permissive and restrictive host cells. At 41 C in the AH line of African green monkey kidney cells, the mutants are deficient in an early function required to produce infectious viral deoxyribonucleic acid (DNA). Temperature-shift experiments and analysis of SV40 viral DNA replication by gel electrophoresis have provided strong evidence that the ts gene product of the three mutants is directly required to initiate each new round of viral DNA replication but is not required to complete a cycle which has already begun. The synthesis of mutant DNA molecules themselves can be initiated by a nonmutant gene product in viral complementation studies at 41 C. The cell, however, cannot substitute a host function to provide the initiator required for the replication of free viral DNA. The viral initiator is also required to establish the stable transformation of 3T3 cells.  相似文献   

18.
J Cornelis  Z Z Su  C Dinsart  J Rommelaere 《Biochimie》1982,64(8-9):677-680
The UV-irradiated temperature-sensitive early SV40 mutant tsA209 is able to activate at the nonpermissive temperature the expression of mutator and recovery functions in rat cells. Unirradiated SV40 activates these functions only to a low extent. The expression of these mutator and recovery functions in SV40-infected cells was detected using the single-stranded DNA parvovirus H-1 as a probe. Because early SV40 mutants are defective in the initiation of viral DNA synthesis at the nonpermissive temperature, these results suggest that replication of UV-damaged DNA is not a prerequisite for the activation of mutator and recovery functions in mammalian cells. The expression of the mutator function is dose-dependent, i.e., the absolute number of UV-irradiated SV40 virions introduced per cell determines its level. Implications for the interpretation of mutation induction curves in the progeny of UV-irradiated SV40 in permissive host cells are discussed.  相似文献   

19.
Two cell clones were isolated from the simian line CV1, permissive for simian virus 40 (SV40), by selection at low temperature with the tsA239 mutant of SV40. These clones exhibited cold-sensitive semipermissivity to both SV40 virions and SV40 DNA. On the basis of virus yields, their resistance to viral DNA was increased approximately 15 times over that of CV1 cells when the incubation temperature was lowered from 38.5 to 33.5 degrees C. A further 30- to 40-fold resistance increase was exhibited at both temperatures upon infection with SV40 virions. Partial characterization of these clones indicated that the cold sensitivity affected an early function in viral growth, between viral uncoating and the appearance of T-antigen positivity, with a burst-size decrease in all cells at the restricted temperature. This conditional defect appeared to be superimposed upon a temperature-independent uncoating defect, presumably carried in a CV1 subpopulation from which the two clones were ultimately selected.  相似文献   

20.
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号