首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cbfa1/Runx2与成骨细胞分化调控   总被引:9,自引:0,他引:9  
成骨细胞是由间充质干细胞经骨原细胞和前成骨细胞分化而来的。近年来已鉴定转录因子Cbfal(core binding factor α1)是成骨细胞分化和骨形成的关键调控因子。在成骨细胞分化的过程中,Cbfal通过调控成骨细胞特异性细胞外基质蛋白基因的表达和成骨细胞周期参与成骨细胞的分化过程。新近发现Cbfal能通过自身的PST序列区域与Smads结合形成复合物共同参与成骨细胞的分化调控。  相似文献   

2.
Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo.  相似文献   

3.
Over-expression of human FGF-2 cDNA linked to the phosphoglycerate kinase promoter in transgenic (TgFGF2) mice resulted in a dwarf mouse with premature closure of the growth plate and shortening of bone length. This study was designed to further characterize bone structure and remodeling in these mice. Bones of 1-6 month-old wild (NTg) and TgFGF2 mice were studied. FGF-2 protein levels were higher in bones of TgFGF2 mice. Bone mineral density was significantly decreased as early as 1 month in femurs from TgFGF2 mice compared with NTg mice. Micro-CT of trabecular bone of the distal femurs from 6-month-old TgFGF2 mice revealed significant reduction in trabecular bone volume, trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Osteoblast surface/bone surface, double-labeled surface, mineral apposition rate, and bone formation rates were all significantly reduced in TgFGF2 mice. There were fewer TRAP positive osteoclasts in calvaria from TgFGF2 mice. Quantitative histomorphometry showed that total bone area was similar in both genotypes, however percent osteoclast surface, and osteoclast number/bone surface were significantly reduced in TgFGF2 mice. Increased replication of TgFGF2 calvarial osteoblasts was observed and primary cultures of bone marrow stromal cells from TgFGF2 expressed markers of mature osteoblasts but formed fewer mineralized nodules. The data presented indicate that non-targeted over-expression of FGF-2 protein resulted in decreased endochondral and intramembranous bone formation. These results are consistent with FGF-2 functioning as a negative regulator of postnatal bone growth and remodeling in this animal model.  相似文献   

4.
骨骼发育中的转录因子Cbfa1   总被引:4,自引:1,他引:4  
骨骼由骨和软骨共同构成.最近的研究表明,转录因子Cbfa1不仅控制骨的形成和生长,还影响软骨组织成熟,并且可能与破骨细胞分化和软骨血管侵入有关.  相似文献   

5.
6.
7.
8.
9.
Runx2 and Cbfbeta are essential for skeletal development during the embryonic stage. Runx2 has two isoforms with different N-termini. We examined the functions of the Runx2 isoforms and Cbfbeta in postnatal bone development. On luciferase and electrophoretic mobility shift assays, Runx2-I was less active than Runx2-II in the absence of Cbfb, but the two Runx2 isoforms had similar activity levels in the presence of Cbfb. We generated Runx2-I transgenic mice under the control of Col1a1 promoter and Runx2-I/Cbfb and Runx2-II/Cbfb double transgenic mice. Runx2-I transgenic mice showed less severe osteopenia and fragility than Runx2-II transgenic mice due to milder inhibition of both osteoblast maturation and transition to osteocytes, even though the former mice showed higher transgene expression. However, Runx2-I/Cbfb and Runx2-II/Cbfb double transgenic mice had enhanced inhibition of osteoblast maturation, resulting in similar severity of osteopenia and fragility, although the latter mice had less osteocytes. These findings indicate that (1) Runx2-II more strongly inhibits osteoblast maturation and transition to osteocytes than Runx2-I; (2) Cbfbeta regulates Runx2 function isoform-dependently; and (3) Runx2-I activity is highly dependent on Cbfbeta. These findings demonstrate that Runx2 isoforms exert their functions through at least partly different mechanisms and Cbfbeta regulates bone development by regulating Runx2 function isoform-dependently.  相似文献   

10.
The low-density lipoprotein receptor-related protein (Lrp)-5 functions as a Wnt coreceptor. Here we show that mice with a targeted disruption of Lrp5 develop a low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation and function in a Cbfa1-independent manner. Lrp5 is expressed in osteoblasts and is required for optimal Wnt signaling in osteoblasts. In addition, Lrp5-deficient mice display persistent embryonic eye vascularization due to a failure of macrophage-induced endothelial cell apoptosis. These results implicate Wnt proteins in the postnatal control of vascular regression and bone formation, two functions affected in many diseases. Moreover, these features recapitulate human osteoporosis-pseudoglioma syndrome, caused by LRP5 inactivation.  相似文献   

11.
Mechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these. Transient transfection of HOBs with sFRP-1 suppressed canonical Wnt signaling by 70% confirming its antagonistic function in these cells. Basal sFRP-1 mRNA levels increased 24-fold during HOB differentiation from pre-osteoblasts to pre-osteocytes, and then declined in mature osteocytes. This expression pattern correlated with levels of cellular viability such that the pre-osteocytes, which had the highest levels of sFRP-1 mRNA, also had the highest rate of cell death. Basal sFRP-1 mRNA levels also increased 29-fold when primary human mesenchymal stem cells were differentiated to osteoblasts supporting the developmental regulation of the gene. Expression of sFRP-1 mRNA was induced 38-fold following prostaglandin E2 (PGE2) treatment of pre-osteoblasts and mature osteoblasts that had low basal message levels. In contrast, sFRP-1 expression was down-regulated by as much as 80% following transforming growth factor (TGF)-beta1 treatment of pre-osteocytes that had high basal mRNA levels. Consistent with this, treatment of pre-osteoblasts and mature osteoblasts with PGE(2) increased apoptosis threefold, while treatment of pre-osteocytes with TGF-beta1 decreased cell death by 50%. Likewise, over-expression of sFRP-1 in HOBs accelerated the rate of cell death threefold. These results establish sFRP-1 as an important negative regulator of human osteoblast and osteocyte survival.  相似文献   

12.
Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L), inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.  相似文献   

13.
14.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

15.
The heterotopic ossification of muscles, tendons, and ligaments is a common problem faced by orthopaedic surgeons. Runx2/Cbfa1 plays an essential role during the osteoblast differentiation and is considered as a molecular switch in osteoblast biology. RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. In this study, we investigated the effect of Runx2/Cbfa1-specific siRNA on osteoblast differentiation and mineralization in osteoblastic cells, and then constructed adenovirus containing siRNA against Runx2/Cbfa1 (Ad-Runx2-siRNA) to inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. Our results showed that the Runx2/Cbfa1-specific siRNA could inhibit the expression of Runx2/Cbfa1 at the level of mRNA and protein. Analysis of the expression of osteoblast maturation genes including type I collagen, osteopontin, bone sialoprotein, and osteocalcin, alkaline phosphatase activity, and matrix mineralization (von kossa) revealed that osteoblast differentiation was inhibited in cultured primary mouse osteoblasts transduced with Ad-Runx2-siRNA. Furthermore, adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 could inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. It is likely that the inhibition of Runx2/Cbfa1 by RNAi could be developed as a powerful approach to prevent or treat heterotopic ossification.  相似文献   

16.
Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.  相似文献   

17.
Multiple myeloma is the most common form of plasma cell dyscrasia and virtually all cases of myeloma exhibit osteolytic lesions, which result in bone pain, pathological fractures, spinal cord compression, and hypercalcaemia. Malignant plasma cells disrupt the delicate balance between bone formation and bone resorption, which ultimately leads to the debilitating osteolytic lesions. This review focuses principally on mechanisms of osteoblast inhibition by malignant plasma cells with emphasis placed on our experimental findings, which support a model for abnormal Wnt signaling in osteoblast suppression. We describe how excessive amounts of soluble Wnt inhibitors secreted by malignant plasma cells in multiple myeloma could promote osteolytic lesions, tumor growth, suppress hematopoiesis, prevent proper engraftment, and expansion of transplanted stem cells. Finally, we detail current therapies shown to disrupt the interaction between the myeloma cell and the microenvironment, leading to activation of osteoblasts.  相似文献   

18.
19.
The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.  相似文献   

20.
Role of Cbfa1 in osteoblast differentiation and function   总被引:13,自引:0,他引:13  
Among the multiple cell lineages whose differentiation is affected by a runt-related gene the osteoblast is a relative newcomer. Molecular biology, developmental biology and mouse and human genetic studies have demonstrated that Cbfa1 is a critical regulator of osteoblast differentiation in vertebrates. Cbfa1 is not only a differentiation factor but also a regulator of bone formation by differentiated osteoblasts beyond development. Thus, Cbfa1 controls osteogenesis at multiple stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号