首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Lorenzen S  Zhang Y 《Proteins》2007,68(1):187-194
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide good performance in bound docking, using unbound structures as input frequently leads to a high number of false positive hits. For the purpose of better selecting correct docking conformations, we structurally cluster the docking decoys generated by four widely-used FFT-based protein-protein docking methods. In all cases, the selection based on cluster size outperforms the ranking based on the inherent scoring function. If we cluster decoys from different servers together, only marginal improvement is obtained in comparison with clustering decoys from the best individual server. A collection of multiple decoy sets of comparable quality will be the key to improve the clustering result from meta-docking servers.  相似文献   

2.
3.
Noy E  Tabakman T  Goldblum A 《Proteins》2007,68(3):702-711
We investigate the extent to which ensembles of flexible fragments (FF), generated by our loop conformational search method, include conformations that are near experimental and reflect conformational changes that these FFs undergo when binary protein-protein complexes are formed. Twenty-eight FFs, which are located in protein-protein interfaces and have different conformations in the bound structure (BS) and unbound structure (UbS) were extracted. The conformational space of these fragments in the BS and UbS was explored with our method which is based on the iterative stochastic elimination (ISE) algorithm. Conformational search of BSs generated bound ensembles and conformational search of UbSs produced unbound ensembles. ISE samples conformations near experimental (less than 1.05 A root mean square deviation, RMSD) for 51 out of the 56 examined fragments in the bound and unbound ensembles. In 14 out of the 28 unbound fragments, it also samples conformations within 1.05 A from the BS in the unbound ensemble. Sampling the bound conformation in the unbound ensemble demonstrates the potential biological relevance of the predicted ensemble. The 10 lowest energy conformations are the best choice for docking experiments, compared with any other 10 conformations of the ensembles. We conclude that generating conformational ensembles for FFs with ISE is relevant to FF conformations in the UbS and BS. Forming ensembles of the isolated proteins with our method prior to docking represents more comprehensively their inherent flexibility and is expected to improve docking experiments compared with results obtained by docking only UbSs.  相似文献   

4.
A protein-protein docking approach has been developed based on a reduced protein representation with up to three pseudo atoms per amino acid residue. Docking is performed by energy minimization in rotational and translational degrees of freedom. The reduced protein representation allows an efficient search for docking minima on the protein surfaces within. During docking, an effective energy function between pseudo atoms has been used based on amino acid size and physico-chemical character. Energy minimization of protein test complexes in the reduced representation results in geometries close to experiment with backbone root mean square deviations (RMSDs) of approximately 1 to 3 A for the mobile protein partner from the experimental geometry. For most test cases, the energy-minimized experimental structure scores among the top five energy minima in systematic docking studies when using both partners in their bound conformations. To account for side-chain conformational changes in case of using unbound protein conformations, a multicopy approach has been used to select the most favorable side-chain conformation during the docking process. The multicopy approach significantly improves the docking performance, using unbound (apo) binding partners without a significant increase in computer time. For most docking test systems using unbound partners, and without accounting for any information about the known binding geometry, a solution within approximately 2 to 3.5 A RMSD of the full mobile partner from the experimental geometry was found among the 40 top-scoring complexes. The approach could be extended to include protein loop flexibility, and might also be useful for docking of modeled protein structures.  相似文献   

5.
The methods of continuum electrostatics are used to calculate the binding free energies of a set of protein-protein complexes including experimentally determined structures as well as other orientations generated by a fast docking algorithm. In the native structures, charged groups that are deeply buried were often found to favor complex formation (relative to isosteric nonpolar groups), whereas in nonnative complexes generated by a geometric docking algorithm, they were equally likely to be stabilizing as destabilizing. These observations were used to design a new filter for screening docked conformations that was applied, in conjunction with a number of geometric filters that assess shape complementarity, to 15 antibody-antigen complexes and 14 enzyme-inhibitor complexes. For the bound docking problem, which is the major focus of this paper, native and near-native solutions were ranked first or second in all but two enzyme-inhibitor complexes. Less success was encountered for antibody-antigen complexes, but in all cases studied, the more complete free energy evaluation was able to identify native and near-native structures. A filter based on the enrichment of tyrosines and tryptophans in antibody binding sites was applied to the antibody-antigen complexes and resulted in a native and near-native solution being ranked first and second in all cases. A clear improvement over previously reported results was obtained for the unbound antibody-antigen examples as well. The algorithm and various filters used in this work are quite efficient and are able to reduce the number of plausible docking orientations to a size small enough so that a final more complete free energy evaluation on the reduced set becomes computationally feasible.  相似文献   

6.
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.  相似文献   

7.
Protein docking using a genetic algorithm   总被引:2,自引:0,他引:2  
A genetic algorithm (GA) for protein-protein docking is described, in which the proteins are represented by dot surfaces calculated using the Connolly program. The GA is used to move the surface of one protein relative to the other to locate the area of greatest surface complementarity between the two. Surface dots are deemed complementary if their normals are opposed, their Connolly shape type is complementary, and their hydrogen bonding or hydrophobic potential is fulfilled. Overlap of the protein interiors is penalized. The GA is tested on 34 large protein-protein complexes where one or both proteins has been crystallized separately. Parameters are established for which 30 of the complexes have at least one near-native solution ranked in the top 100. We have also successfully reassembled a 1,400-residue heptamer based on the top-ranking GA solution obtained when docking two bound subunits.  相似文献   

8.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

9.
Here we carry out an examination of shape complementarity as a criterion in protein-protein docking and binding. Specifically, we examine the quality of shape complementarity as a critical determinant not only in the docking of 26 protein-protein "bound" complexed cases, but in particular, of 19 "unbound" protein-protein cases, where the structures have been determined separately. In all cases, entire molecular surfaces are utilized in the docking, with no consideration of the location of the active site, or of particular residues/atoms in either the receptor or the ligand that participate in the binding. To evaluate the goodness of the strictly geometry-based shape complementarity in the docking process as compared to the main favorable and unfavorable energy components, we study systematically a potential correlation between each of these components and the root mean square deviation (RMSD) of the "unbound" protein-protein cases. Specifically, we examine the non-polar buried surface area, polar buried surface area, buried surface area relating to groups bearing unsatisfied buried charges, and the number of hydrogen bonds in all docked protein-protein interfaces. For these cases, where the two proteins have been crystallized separately, and where entire molecular surfaces are considered without a predefinition of the binding site, no correlation is observed. None of these parameters appears to consistently improve on shape complementarity in the docking of unbound molecules. These findings argue that simplicity in the docking process, utilizing geometrical shape criteria may capture many of the essential features in protein-protein docking. In particular, they further reinforce the long held notion of the importance of molecular surface shape complementarity in the binding, and hence in docking. This is particularly interesting in light of the fact that the structures of the docked pairs have been determined separately, allowing side chains on the surface of the proteins to move relatively freely. This study has been enabled by our efficient, computer vision-based docking algorithms. The fast CPU matching times, on the order of minutes on a PC, allow such large-scale docking experiments of large molecules, which may not be feasible by other techniques. Proteins 1999;36:307-317.  相似文献   

10.
A major challenge in the field of protein-protein docking is to discriminate between the many wrong and few near-native conformations, i.e. scoring. Here, we introduce combinatorial complex-type-dependent scoring functions for different types of protein-protein complexes, protease/inhibitor, antibody/antigen, enzyme/inhibitor and others. The scoring functions incorporate both physical and knowledge-based potentials, i.e. atomic contact energy (ACE), the residue pair potential (RP), electrostatic and van der Waals' interactions. For different type complexes, the weights of the scoring functions were optimized by the multiple linear regression method, in which only top 300 structures with ligand root mean square deviation (L_RMSD) less than 20 A from the bound (co-crystallized) docking of 57 complexes were used to construct a training set. We employed the bound docking studies to examine the quality of the scoring function, and also extend to the unbound (separately crystallized) docking studies and extra 8 protein-protein complexes. In bound docking of the 57 cases, the first hits of protease/inhibitor cases are all ranked in the top 5. For the cases of antibody/antigen, enzyme/inhibitor and others, there are 17/19, 5/6 and 13/15 cases with the first hits ranked in the top 10, respectively. In unbound docking studies, the first hits of 9/17 protease/inhibitor, 6/19 antibody/antigen, 1/6 enzyme/inhibitor and 6/15 others' complexes are ranked in the top 10. Additionally, for the extra 8 cases, the first hits of the two protease/inhibitor cases are ranked in the top for the bound and unbound test. For the two enzyme/inhibitor cases, the first hits are ranked 1st for bound test, and the 119th and 17th for the unbound test. For the others, the ranks of the first hits are the 1st for the bound test and the 12th for the 1WQ1 unbound test. To some extent, the results validated our divide-and-conquer strategy in the docking study, which might hopefully shed light on the prediction of protein-protein interactions.  相似文献   

11.
Bordner AJ  Gorin AA 《Proteins》2007,68(2):488-502
Computational prediction of protein complex structures through docking offers a means to gain a mechanistic understanding of protein interactions that mediate biological processes. This is particularly important as the number of experimentally determined structures of isolated proteins exceeds the number of structures of complexes. A comprehensive docking procedure is described in which efficient sampling of conformations is achieved by matching surface normal vectors, fast filtering for shape complementarity, clustering by RMSD, and scoring the docked conformations using a supervised machine learning approach. Contacting residue pair frequencies, residue propensities, evolutionary conservation, and shape complementarity score for each docking conformation are used as input data to a Random Forest classifier. The performance of the Random Forest approach for selecting correctly docked conformations was assessed by cross-validation using a nonredundant benchmark set of X-ray structures for 93 heterodimer and 733 homodimer complexes. The single highest rank docking solution was the correct (near-native) structure for slightly more than one third of the complexes. Furthermore, the fraction of highly ranked correct structures was significantly higher than the overall fraction of correct structures, for almost all complexes. A detailed analysis of the difficult to predict complexes revealed that the majority of the homodimer cases were explained by incorrect oligomeric state annotation. Evolutionary conservation and shape complementarity score as well as both underrepresented and overrepresented residue types and residue pairs were found to make the largest contributions to the overall prediction accuracy. Finally, the method was also applied to docking unbound subunit structures from a previously published benchmark set.  相似文献   

12.
Shentu Z  Al Hasan M  Bystroff C  Zaki MJ 《Proteins》2008,70(3):1056-1073
We describe an efficient method for partial complementary shape matching for use in rigid protein-protein docking. The local shape features of a protein are represented using boolean data structures called Context Shapes. The relative orientations of the receptor and ligand surfaces are searched using precalculated lookup tables. Energetic quantities are derived from shape complementarity and buried surface area computations, using efficient boolean operations. Preliminary results indicate that our context shapes approach outperforms state-of-the-art geometric shape-based rigid-docking algorithms.  相似文献   

13.
14.
Kirys T  Ruvinsky AM  Tuzikov AV  Vakser IA 《Proteins》2012,80(8):2089-2098
Conformational changes in the side chains are essential for protein-protein binding. Rotameric states and unbound- to-bound conformational changes in the surface residues were systematically studied on a representative set of protein complexes. The side-chain conformations were mapped onto dihedral angles space. The variable threshold algorithm was developed to cluster the dihedral angle distributions and to derive rotamers, defined as the most probable conformation in a cluster. Six rotamer libraries were generated: full surface, surface noninterface, and surface interface-each for bound and unbound states. The libraries were used to calculate the probabilities of the rotamer transitions upon binding. The stability of amino acids was quantified based on the transition maps. The noninterface residues' stability was higher than that of the interface. Long side chains with three or four dihedral angles were less stable than the shorter ones. The transitions between the rotamers at the interface occurred more frequently than on the noninterface surface. Most side chains changed conformation within the same rotamer or moved to an adjacent rotamer. The highest percentage of the transitions was observed primarily between the two most occupied rotamers. The probability of the transition between rotamers increased with the decrease of the rotamer stability. The analysis revealed characteristics of the surface side-chain conformational transitions that can be utilized in flexible docking protocols.  相似文献   

15.
Mason AC  Jensen JH 《Proteins》2008,71(1):81-91
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively.  相似文献   

16.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

17.
Protein docking and complementarity   总被引:22,自引:0,他引:22  
Predicting the structures of protein-protein complexes is a difficult problem owing to the topographical and thermodynamic complexity of these structures. Past efforts in this area have focussed on fitting the interacting proteins together using rigid body searches, usually with the conformations of the proteins as they occur in crystal structure complexes. Here we present work which uses a rigid body docking method to generate the structures of three known protein complexes, using both the bound and unbound conformations of the interacting molecules. In all cases we can regenerate the geometry of the crystal complexes to high accuracy. We also are able to find geometries that do not resemble the crystal structure but nevertheless are surprisingly reasonable both mechanistically and by some simple physical criteria. In contrast to previous work in this area, we find that simple methods for evaluating the complementarity at the protein-protein interface cannot distinguish between the configurations that resemble the crystal structure complex and those that do not. Methods that could not distinguish between such similar and dissimilar configurations include surface area burial, solvation free energy, packing and mechanism-based filtering. Evaluations of the total interaction energy and the electrostatic interaction energy of the complexes were somewhat better. Of the techniques that we tried, energy minimization distinguished most clearly between the "true" and "false" positives, though even here the energy differences were surprisingly small. We found the lowest total interaction energy from amongst all of the putative complexes generated by docking was always within 5 A root-mean-square of the crystallographic structure. There were, however, several putative complexes that were very dissimilar to the crystallographic structure but had energies that were close to that of the low energy structure. The magnitude of the error in energy calculations has not been established in macromolecular systems, and thus the reliability of the small differences in energy remains to be determined. The ability of this docking method to regenerate the crystallographic configurations of the interacting proteins using their unbound conformations suggests that it will be a useful tool in predicting the structures of unsolved complexes.  相似文献   

18.
T Hou  J Wang  L Chen  X Xu 《Protein engineering》1999,12(8):639-648
A genetic algorithm (GA) combined with a tabu search (TA) has been applied as a minimization method to rake the appropriate associated sites for some biomolecular systems. In our docking procedure, surface complementarity and energetic complementarity of a ligand with its receptor have been considered separately in a two-stage docking method. The first stage was to find a set of potential associated sites mainly based on surface complementarity using a genetic algorithm combined with a tabu search. This step corresponds with the process of finding the potential binding sites where pharmacophores will bind. In the second stage, several hundreds of GA minimization steps were performed for each associated site derived from the first stage mainly based on the energetic complementarity. After calculations for both of the two stages, we can offer several solutions of associated sites for every complex. In this paper, seven biomolecular systems, including five bound complexes and two unbound complexes, were chosen from the Protein Data Bank (PDB) to test our method. The calculated results were very encouraging-the hybrid minimization algorithm successfully reaches the correct solutions near the best binded modes for these protein complexes. The docking results not only predict the bound complexes very well, but also get a relatively accurate complexed conformation for unbound systems. For the five bound complexes, the results show that surface complementarity is enough to find the precise binding modes, the top solution from the tabu list generally corresponds to the correct binding mode. For the two unbound complexes, due to the conformational changes upon binding, it seems more difficult to get their correct binding conformations. The predicted results show that the correct binding mode also corresponds to a relatively large surface complementarity score. In these two test cases, the correct solution can be found in the top several solutions from the tabu list. For unbound complexes, the interaction energy from energetic complementarity is very important, it can be used to filter these solutions from the surface complementarity. After the evaluation of the energetic complementarity, the conformations and orientations close to the crystallographically determined structures are resolved. In most cases, the smallest root mean square distance (r.m.s.d.) from the GA combined with TA solutions is in a relatively small region. Our program of automatic docking is really a universal one among the procedures used for the theoretical study of molecular recognition.  相似文献   

19.
Understanding energetics and mechanism of protein-protein association remains one of the biggest theoretical problems in structural biology. It is assumed that desolvation must play an essential role during the association process, and indeed protein-protein interfaces in obligate complexes have been found to be highly hydrophobic. However, the identification of protein interaction sites from surface analysis of proteins involved in non-obligate protein-protein complexes is more challenging. Here we present Optimal Docking Area (ODA), a new fast and accurate method of analyzing a protein surface in search of areas with favorable energy change when buried upon protein-protein association. The method identifies continuous surface patches with optimal docking desolvation energy based on atomic solvation parameters adjusted for protein-protein docking. The procedure has been validated on the unbound structures of a total of 66 non-homologous proteins involved in non-obligate protein-protein hetero-complexes of known structure. Optimal docking areas with significant low-docking surface energy were found in around half of the proteins. The 'ODA hot spots' detected in X-ray unbound structures were correctly located in the known protein-protein binding sites in 80% of the cases. The role of these low-surface-energy areas during complex formation is discussed. Burial of these regions during protein-protein association may favor the complexed configurations with near-native interfaces but otherwise arbitrary orientations, thus driving the formation of an encounter complex. The patch prediction procedure is freely accessible at http://www.molsoft.com/oda and can be easily scaled up for predictions in structural proteomics.  相似文献   

20.
Improved side-chain modeling for protein-protein docking   总被引:1,自引:0,他引:1  
Success in high-resolution protein-protein docking requires accurate modeling of side-chain conformations at the interface. Most current methods either leave side chains fixed in the conformations observed in the unbound protein structures or allow the side chains to sample a set of discrete rotamer conformations. Here we describe a rapid and efficient method for sampling off-rotamer side-chain conformations by torsion space minimization during protein-protein docking starting from discrete rotamer libraries supplemented with side-chain conformations taken from the unbound structures, and show that the new method improves side-chain modeling and increases the energetic discrimination between good and bad models. Analysis of the distribution of side-chain interaction energies within and between the two protein partners shows that the new method leads to more native-like distributions of interaction energies and that the neglect of side-chain entropy produces a small but measurable increase in the number of residues whose interaction energy cannot compensate for the entropic cost of side-chain freezing at the interface. The power of the method is highlighted by a number of predictions of unprecedented accuracy in the recent CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号