首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective was to determine differences in follicle and reproductive hormone characteristics in mares with ovulatory and flunixin meglumine (FM)-induced anovulatory cycles. Estrous mares were given 1500 IU hCG when the follicle was ≥ 32 mm (0 h). In Experiment 1, control mares (n = 7) were not treated further. The remaining mares (n = 11) were given 1.7 mg/kg FM i.v. twice daily, from 0 to 36 h after hCG treatment. Blood samples and ultrasonographic examinations were performed every 12 h. All control mares ovulated normally between 36 and 48 h. In contrast, eight of 11 FM mares did not ovulate, but developed luteinized unruptured follicles (LUFs). Three FM-treated mares did not develop conventional LUFs. Plasma progesterone concentrations were lower (P < 0.05) in LUF mares at 96, 120, and 216 h than in controls, whereas plasma LH concentrations were higher (P < 0.05) between 108 and 120 h in LUF mares than in controls. Plasma concentrations of PGFM and estradiol did not differ significantly between groups. In Experiment 2, the three mares that did not develop LUFs were treated, during the consecutive cycle, with the same dose of FM but with increased frequency at zero, 12, 24, 30, 36, and 48 h after hCG. One mare formed a LUF, whereas the other two did not. These two mares had lower LH concentrations than LUF or control mares in the two consecutive cycles. In conclusion, systemic treatment with FM blocked ovulation in 73% of treated mares. Mares with LUFs had lower progesterone and higher LH concentrations than control mares.  相似文献   

2.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

3.
Our previous work indicates that ewe breed differences in fertility following cervical AI with frozen-thawed semen are due to failure of normal sperm transport and/or early embryo development. Here we examined differences in hormone concentrations about the time of ovulation among more (Finnish Landrace and Belclare) and less (Suffolk and Texel) fertile ewes after AI with frozen thawed semen. In Experiment 1, oestradiol concentrations were measured in samples collected frequently from 12h before to 18h after the LH surge and progesterone was measured in samples collected from 9 to 27h after the LH surge in Suffolk (n=24), Texel (n=20) and Finnish Landrace (n=27) ewes. In Experiment 2, oestradiol concentrations were measured in samples collected frequently from 24h before to 6h after the LH surge and progesterone was measured in samples collected from 6h to 6 days after the LH surge in Suffolk (n=35) and Belclare (n=30) ewes. In Experiment 1, there was an effect of breed, time and their interaction (P<0.001) on oestradiol concentrations between -12 and +6h but only breed differences at +12 and +18h (P<0.01). Progesterone concentrations increased over time (P<0.001) and the rate of increase was significantly greater in Finnish Landrace than in the other two breeds. In Experiment 2, oestradiol concentrations were unaffected by breed. There was an interaction between breed and time with the rate of increase of progesterone being greater in Belclare than Suffolk ewes (P<0.001). In conclusion, differences in hormone concentrations in the periovulatory period are not consistent with ewe breed differences in fertility; however, we have showed that progesterone concentrations rise earlier in the more prolific breeds and suggest that this may explain reported ewe breed differences in embryo development.  相似文献   

4.
The responsiveness of the hypothalamo-pituitary axis to steroid treatments for ovarian synchronization and the ovarian superstimulatory response to exogenous FSH was compared in 13-14 year old cows and their 1-4 year old young daughters. We tested the hypotheses that aging in cattle is associated with: (1) decreased follicular wave synchrony after estradiol and progesterone treatment; (2) delayed LH surge and ovulation in response to exogenous preovulatory estradiol treatment; (3) reduced superstimulatory response to exogenous FSH. Higher plasma FSH concentrations (P<0.01), and a tendency (P=0.07) for fewer 4-5 mm follicles at wave emergence were observed in old cows (n=10) than in young cows (n=9). The suppressive effect of estradiol/progesterone treatment on FSH was similar between old and young cows. Although the preovulatory LH surge in response to estradiol treatment was delayed in old than young cows (P=0.01), detected ovulation times were not different. No difference in ovarian superstimulatory response was detected between age groups, but old cows (n=8) tended (P=0.10) to have fewer large follicles (>or=9 mm) 12 h after last FSH treatment than in young cows (n=7). We concluded that pituitary and ovarian responsiveness to estradiol/progesterone synchronization treatment was similar between old and young cows, but aging was associated with a delayed preovulatory LH surge subsequent to estradiol treatment. Old cows tended to have fewer large follicles after superstimulatory treatment than young cows.  相似文献   

5.
Two experiments were conducted to examine the effects of ram exposure during the breeding season, in combination with progestagen treatment on estrus synchronization, fertility the LH surge and ovulation in ewes. Experiment 1 was subdivided into experiments 1a and 1b. In all experiments cross-bred ewes were treated with an intravaginal sponge for 12-14 days and three days before sponge withdrawal ewes were divided into control (no further treatment; n=191, 103 and 50 for experiments 1a, 1b and 2, respectively) or ram exposed (three mature rams per 50 ewes were introduced; +Ram; n=187, 99 and 49 for experiments 1a, 1b and 2, respectively). At sponge withdrawal ewes in Experiments 1a and 2 received 500 IU eCG and rams were removed from all the +Ram groups. In Experiments 1a and 1b, raddled, entire rams were introduced to ewes 48 h after sponge withdrawal. The timing of mating was recorded and ewes were maintained until lambing. In Experiment 2, estrus behavior was determined every 4 h and the time of the LH surge and ovulation were determined from a subset of 10 ewes per group. In Experiment 1a, less +Ram ewes were bred by 48 h after ram introduction (control 98% versus +Ram 89%, P<0.001) and in Experiments 1a and 1b 14% fewer (P<0.05) of the ewes bred in the first 3 h after ram introduction lambed to that service. In Experiment 1a, ram exposed ewes had a lower litter size than control ewes (1.93+/-0.06 versus 1.70+/-0.06 lambs per ewe; P<0.05). In Experiment 2, rams advanced (P<0.05) estrus, the LH surge and ovulation by 2-6 h compared with control ewes. We speculate that exposure of ewes to rams increased LH secretion and that this in turn increased follicle development and the production of oestradiol that led to a more rapid onset of estrus, the LH surge and ovulation compared to control ewes. Unexpectedly, ewes that were bred had lower fertility in the +Ram groups than control groups.  相似文献   

6.
A GnRH antagonist (Antarelix) treatment was used during the breeding season of Romanov ewes, to investigate whether LH pulses are required the day before the preovulatory surge for normal early embryo development in vivo (Expt 1) and in vitro (Expt 2). In Expt 1, at the onset of oestrus after removal of a fluorogestone acetate sponge, group A0.5 (n = 22) received a subcutaneous injection of 0.5 mg Antarelix, and ovulation was induced with an intravenous injection of 3 mg pig LH 24 h later. The control group (group C, n = 20) were untreated. All ewes were mated naturally at 36 and 48 h after oestrus and embryos were recovered 8 days after sponge removal. There were significant differences in the decrease in LH and in the increase in FSH concentration after Antarelix treatment between treated and control groups. The ovulation rate and embryo recovery rate were not significantly different between the two groups but the blastocyst rate was lower (P < 0.0001) in group A0.5 than in group C, with more unfertilized or degenerated oocytes in group A0.5 (69.2%). In Expt 2, 24 h after sponge removal, group A (n = 10) and group B (n = 10) received one subcutaneous injection of 0.5 mg Antarelix. The control group (group C, n = 10) was left untreated. LH pulsatility was re-established in group B with hourly intravenous injections of 5 micrograms ovine LH for 24 h. Oocytes were collected by flushing the oviducts 28 h after the LH surge, and were fertilized and cultured in vitro for 7 days. Ovulation and cleavage rates were not significantly different among the three groups but a higher rate of blastocysts (P < 0.01) was obtained after Antarelix treatment when LH pulsatility was re-established (group B). Oestradiol concentration was strongly depressed (P < 0.0003) after Antarelix treatment in group A, but was maintained after injection of LH pulses in group B, although at a lower value than before the preovulatory surge in the control group. In conclusion, inhibition of endogenous LH pulses 1 day before the preovulatory surge was not essential for ovulation and in vitro fertilization but was associated with a decrease in plasma oestradiol concentrations and inferior embryo development both in vivo and in vitro. When LH pulsatility was re-established, oestradiol concentrations increased and embryo development was restored.  相似文献   

7.
The role of passage of follicular fluid into the peritoneal cavity during ovulation in the transient disruption in the periovulatory FSH and LH surges was studied in ovulatory mares (n=7) and in mares with blockage of ovulation by treatment with an inhibitor of prostaglandin synthesis (n=8). Mares were pretreated with hCG when the largest follicle was ≥32 mm (Hour 0). Ultrasonic scanning was done at Hours 24 and 30 and every 2h thereafter until ovulation or ultrasonic signs of anovulation. Blood samples were collected at Hours 24, 30, 32, 34, 36, 38, 48, and 60. Ovulation in the ovulatory group occurred at Hours 38 (five mares), 40, and 44. Until Hour 36, diameter of the follicle and concentrations of FSH, LH, and estradiol-17β (estradiol) were similar between groups. Between Hours 34 and 36, a novel transient increase in estradiol occurred in each group, and color-Doppler signals of blood flow in the follicular wall decreased in the ovulatory group and increased in the anovulatory group. In each group, FSH and LH periovulatory surges were disrupted by a decrease or plateau between Hours 38 and 48 and an increase between Hours 48 and 60. The discharge of hormone-laden follicular fluid into the peritoneal cavity at ovulation was not an adequate sole explanation for the temporally associated transient depression in FSH and LH. Other routes from follicle to circulation for gonadotropin inhibitors played a role, based on similar depression in the ovulatory and anovulatory groups.  相似文献   

8.
Inducing ovulation in a cyclic mare is often necessary. For this purpose, hCG has been used commonly, but the response can be reduced after successive administrations. The aims of this study were to test the effectiveness of buserelin in hastening ovulation in estrus mares, and its influence on fertility; and to investigate the effect of treatment on LH secretion. Five crossover trials were designed to compare the effect of two treatments: buserelin (40 microg in 4 doses i.v. at 12 h intervals) vs placebo (Experiments 1 and 2); buserelin 40 microg (in 4 doses i.v.) vs 20 microg (Experiment 3); buserelin (4 doses of 20 microg i.v.) vs hCG (1 dose of 2,500 IU i.v.) (Experiment 4); or buserelin (3 doses of 13.3 microg at 6 h interval) vs hCG (Experiment 5). In Experiment 2, blood samples were taken hourly until ovulation, for LH measurements. In Experiment 1, buserelin treatment significantly hastened ovulation. Reduction of the dose by half (Experiment 3) did not alter the effectiveness. In Experiments 4 and 5, buserelin was as effective as hCG in inducing ovulation between 24 and 48 h after initiation of treatment. Buserelin treatment induced a rise in LH concentration during the 48 h period of the experiment, and LH concentrations before ovulation were significantly higher in buserelin treated cycles than in placebo cycles. These experiments demonstrated the usefulness of two new protocols of administration of buserelin, as an alternative to hCG for induction of ovulation. One hypothesis explaining the mechanism of action is that the persistant rise in LH concentration could modify the ratio of biological/immunological LH, as it occurs physiologically, thereby hastening ovulation.  相似文献   

9.
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI.  相似文献   

10.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

11.
Hypothalamic unresponsiveness to an estradiol surge appears to be an underlying cause of large follicle anovular condition (follicular cysts), but progesterone exposure for 7 days resolves this condition. In this study, dairy cows with induced (Experiment 1) or naturally occurring (Experiment 2) follicular cysts were treated for different times with progesterone. In Experiment 1, 16 of 26 cows (62%) were induced into anovulation by causing a GnRH/LH surge when no ovulatory follicle was on the ovary. Anovular cows (n = 16) were assigned to one of four treatment groups ( 0, 1, 3, or 7 days of progesterone treatment) using an intravaginal, progesterone-releasing implant (CIDR). All anovular cows had low circulating progesterone concentrations before controlled internal drug releasing (CIDR) and greater concentrations that reached steady state (1.3 +/- 0.1 ng/mL progesterone) by 3 h after CIDR insertion. Circulating progesterone decreased to basal concentrations by 4 h after CIDR removal. Cows were treated with 5mg estradiol benzoate (EB) 12 h after CIDR removal. None (n = 4) of the control cows (0 day) had an LH surge after EB. All of the 3 days (5/5) and 7 days (4/4) CIDR-treated cows had an LH surge following EB, but only one of the 1 day (1/3) CIDR-treated cows. Magnitude of the LH peak was similar in the 3 and 7 days cows. All cows treated for 7 days ovulated (4/4), whereas, ovulation occurred in only 3/5, 1/3, and 0/4 of the cows treated for 3, 1, and 0 day, respectively. The two cows in the 3 days group that did not ovulate had a normal LH surge, but these two cows had a smaller maximal follicle size than cows that ovulated. In Experiment 2, naturally anovular lactating dairy cows (24 of 248) were identified using weekly ultrasonography. All anovular cows grew follicles to >12 mm, with 54% (13 of 24) having follicles larger than ovular size (15-24 mm) and 33% (8 of 24) having follicles that would be considered cystic (>25 mm). Anovular cows were randomly assigned to CIDR treatment for 0, 1, or 3 days. All (7/7) of 3 days, 33% (3/9) of 1 day, and 25% (2/8) of control (0 day) cows ovulated by 1 week after CIDR removal. Thus, 3 days but not 1 day of progesterone exposure appears to be sufficient to reinitiate estradiol responsiveness of the hypothalamus.  相似文献   

12.
Diameter of the preovulatory follicle, plasma concentrations of LH and estradiol, and vascularization of the follicle wall, based on color-Doppler signals, were characterized in 40 pony mares for 6 days preceding ovulation (Days -6 to -1; preovulatory period). Comparisons between the preovulatory periods preceding the first compared with a later ovulation during the year were used to study the relationships between LH and estradiol and between vascularization and estradiol. Diameter of the preovulatory follicle was greater (P<0.02) and concentration of LH was less (P<0.02) during the first preovulatory period, whereas concentration of estradiol was not different between the first and second preovulatory periods. Vascularized area (cm(2)) of the follicle wall increased at a reduced rate during the first preovulatory period, as indicated by an interaction (P<0.03) between day and group. Vascularized area was similar between the preovulatory groups on Day -6, and a reduced rate of increase resulted in a lesser (P<0.001) area on Day -1 before the first ovulation (1.4+/-0.1cm(2)) than before a later ovulation (2.2+/-0.2 cm(2)). Results demonstrated that follicle vascularization and the LH surge were attenuated preceding the first ovulation of the year with no indication that estradiol was involved in the differences between the first and later ovulations.  相似文献   

13.
The effect of intramammary (IMM) or intravenous (IV) administration of E. coli endotoxin (LPS), at the onset of estrus, at the time of ovulation was examined. Steroid and gonadotropin concentrations around ovulation were also determined. Lactating Holstein cows (n=33) were assigned to saline-controls (n=12) and treated with LPS-IV (0.5mug/kg; n=13) or LPS-IMM (10mug; n=8). Synchronized cows were observed continuously for estrus. LPS (or saline) was injected within 30min from the onset of standing estrus, at peak estradiol concentrations. The typical rise of body temperature, somatic cell count, cortisol, and NAGase activity was noted. One-third of both LPS-IV- and LPS-IMM-treated cows were manifested by an extended estrus to ovulation (E-O) interval of around 75h or did not ovulate, compared with about 30h in the other 2/3 of LPS cows and all controls. Estradiol concentrations 24h before and after LPS did not differ between groups. However, LPS-IV cows with extended intervals exhibited another estrus and an additional rise of estradiol followed by delayed ovulation. LPS-treated cows with a delayed E-O interval had low or delayed LH surge; two LPS-treated cows did not exhibit LH surge and did not ovulate. All control cows exhibited normal hormone levels. Delayed ovulation was associated with a delayed rise of luteal progesterone. The results indicated that exposing cows to endotoxin during estrus induced a decreased and delayed LH surge in one-third of the cows. This was associated with delayed ovulation, which reduces the chances of successful fertilization.  相似文献   

14.
The ability of ram introduction (RI) and progesterone pre-treatment to induce increases in LH secretion and ovulation, and the ability of progesterone pre-treatment with or without estrogen to induce estrus and ovulation in fall-born ewe lambs during seasonal anestrus was investigated. In early July, lambs of mixed breeds (41.8+/-0.6 kg and 250.7+/-1.3 days of age) were assigned to receive no treatment (C, n=7), to be introduced to rams (7:1 ewe:ram ratio; R, n=7), to be treated with progesterone (a used CIDR device) for 5 days (P, n=5), to be treated with progesterone and introduced to rams at CIDR removal (PR, n=11), or to receive the latter treatment plus an injection of estradiol benzoate (25 microg, E2beta i.m.) 24 h after CIDR withdrawal/RI (PER, n=11). Blood samples were collected from all lambs every 4h for 60 h beginning at RI/CIDR withdrawal (0 h), to characterize the LH surge profile and in groups R and C every 15 min for 8 h between 12 and 20 h for determination of LH pulse frequencies. Ultrasonographic examinations of the ovaries were conducted at 0, 36 and 60 h. In ram-exposed groups lambs were also observed for raddle marks every 4h from 0 to 60 h. The LH pulse frequency (pulses/8 h) was higher in group R (P<0.01; 7.7+/- 0.5) than group C lambs (2.7+/- 0.8). More lambs in groups exposed to rams than in the C or P groups showed an LH surge (P<0.05; 0, 100, 0, 72.7 and 100%, for C, R, P, PR and PER groups, respectively). Time from RI/CIDR removal to initiation of the LH surge was greater in lambs in the PR (43.5+/- 3.8h) than in the R (32.6+/- 4.6h; P=0.08) or PER (33+/- 1.2h; P<0.01). Diameter of the largest follicle at 0 h (3.2+/- 0.2mm) was not different among groups. Growth rate of the largest follicle between 0 and 36 h was greater (P<0.05) in RI than in C or P groups. Diameter of the largest follicle at 36 h was larger (P<0.05) in lambs in R (5.6+/- 0.2mm) and PR (5.1+/- 0.5mm) than C (4.0+/- 0.6mm) or P (3.8+/- 0.4mm) groups, and in R than PER (4.3+/- 0.4mm) treatment groups. Only lambs in the RI groups ovulated. Among RI groups the percentage of lambs ovulating was greater in the R (P<0.05; 85.7%) than PR (33.3%) groups with an intermediate response observed in lambs in treatment group PER (71.4%). The estrous response in progesterone pre-treated groups was greater (P<0.05) in lambs also treated with estrogen (PER; 81.8%), than in lambs introduced to rams alone (PR; 45.5%). In conclusion, ram introduction by itself, but not progesterone treatment alone, induces increases in LH pulse frequency, follicular development, and ovulation in fall-born ewe lambs during seasonal anestrus, further, P4 pre-treatment and RI when combined with E2 results in a high estrous response.  相似文献   

15.
The purpose of this study was to determine the occurrence of and the regulatory mechanisms involved in priming of the pituitary to GnRH before the preovulatory LH surge in sheep. Experiment 1: Forty-two ewes had progestagen devices removed after 14 days and were assigned to luteal (Lut) or follicular (Foll) groups. Fifteen days later, blood sampling was initiated either immediately or 36 h after induced luteolysis in groups Lut and Foll, respectively. After 4 h, ewes were administered either saline (n = 5) or 250 ng (n = 8) or 10 microg (n = 8) of GnRH. Five ewes per treatment group were killed 1 h later, while remaining animals were blood sampled for a further 7 h. Experiment 2: Eighteen ewes were allocated to Lut and Foll groups (described above). Blood samples were collected from 2 h before GnRH (10 microg) treatment until 7 h after. Despite up-regulated GnRH-R mRNA levels in Foll ewes, pituitary content and plasma levels of LH and LHbeta mRNA levels were similar between groups. Mean FSHbeta mRNA and plasma FSH levels were elevated in Lut ewes but declined after GnRH treatment. Inversely, plasma estradiol and inhibin-A concentrations were higher in Foll ewes and declined after GnRH treatment. Fewer LH(+ve)/secretogranin II(-ve) (SgII(-ve)) granules were present in gonadotropes of Foll ewes, coincident with increased basal LH levels. Fewer smaller sized granules were present after GnRH treatment. In conclusion, there was no evidence of self-priming before onset of the preovulatory LH surge. Constitutive release of LH(+ve)/SgII(-ve) granules may maintain basal LH levels while smaller sized, presumably mature granules may be preferentially released after GnRH stimulation.  相似文献   

16.
The effect of the so-called Short-Term Protocol (5-day progesterone treatment+PGF(2)alpha) on ovarian activity and LH surge was studied in goats. The goats received 250IU eCG at the time of device withdrawal (eCG group; n=7), or 200microg of EB (estradiol benzoate) 24h after device withdrawal (EB group; n=8), or received neither eCG nor EB (control group; n=8). The Short-Term Protocol induced greater (4.1+/-1.1ng/ml) progesterone serum concentrations at 24h after start of the treatment, that declined to 0.2+/-0.1ng/ml at 12h after device withdrawal. In all of the groups, the maximum concentration of estradiol-17beta was reached at about 36h after device withdrawal. Maximum concentration was greater in the EB group (76.9+/-24.6pmol/l) than in the control group (41.8+/-9.0pmol/l; P<0.01), with the eCG group showing intermediate concentration (70.3+/-32.5pmol/l; P=NS). The LH peak occurred earlier in the eCG group (38.4+/-2.0h after device withdrawal) and in the EB group (41.0+/-4.1h), than in the control group (46.3+/-5.1h; P<0.05). Ovulation occurred earlier in the eCG group (5/7) and in the EB group (8/8) (58.8+/-2.7h and 63.0+/-5.6h, respectively), than in the control group (7/8) (70.2+/-8.3h; P<0.05). In summary, the Short-Term Protocol induced similar concentrations of progesterone among treated goats. In addition, eCG or EB resulted in a similar increase in estradiol-17beta and a similar LH surge, which induced ovulation in most females (86.7%) in a consistent interval (about 60h) after the end of progesterone exposure.  相似文献   

17.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

18.
The aim of this study was to examine the role of LH on the growth of the large preovulatory follicle and its secretion of hormones in sheep. Ewes with ovarian autotransplants were treated with GnRH-antagonist at the time of luteal regression and different LH regimes applied for 60-66 h before administration of an ovulatory stimulus (hCG). In Experiment 1 (N = 24; n = 8), ewes received either no LH or constant or pulsatile infusion of LH at the same dose (1.25 microg/h). In Experiment 2 (N = 12, n = 6), LH was constantly infused at a rate of 1.25 microg or 2.5 microg oLH/h. In Experiment 1, animals receiving either pulsatile or constant LH exhibited increases in estradiol and inhibin A secretion (P < 0.001) and a depression in FSH (P < 0.001) that resembled the normal follicular phase. Similarly in Experiment 2, doubling the dose of LH resulted in a two-fold increase in ovarian estradiol secretion (P < 0.05) but no other changes. All animals receiving LH, regardless of the pattern of stimulation, ovulated and established a normal luteal phase. In contrast, no LH treatment resulted in constant immuno-active LH without pulses, unchanged FSH and inhibin A concentrations (P < 0.05), and basal estradiol secretion (P < 0.001). Morphologically normal large antral follicles were observed in this group and although corpora lutea formed in response to hCG, progesterone profiles were abnormal. In conclusion, these results suggest that LH is an essential requirement for normal ovulatory follicle development and subsequent luteal function and show that a pulsatile mode of LH stimulation is not required by ovulatory follicles.  相似文献   

19.
The effect of altered LH concentrations on the deviation in growth rates between the 2 largest follicles was studied in pony mares. The progestational phase was shortened by administration of PGF2alpha on Day 10 (Day 0=ovulation; n=9) or lengthened by daily administration of 100 mg of progesterone on Days 10 to 30 (n=11; controls, n=10). All follicles > or = 5 mm were ablated on Day 10 in all groups to initiate a new follicular wave. The interovulatory interval was not altered by the PGF2alpha treatment despite a 4-day earlier decrease in progesterone concentrations. Time required for growth of the follicles of the new wave apparently delayed the interval to ovulation after luteolysis. The FSH concentrations of the first post-ablation FSH surge were not different among groups. A second FSH surge with an associated follicular wave began by Day 22 in 7 of 11 mares in the progesterone group and in 0 of 19 mares in the other groups, indicating reduced functional competence of the largest follicle. A prolonged elevation in LH concentrations began on the mean day of wave emergence (Day 11) in the prostaglandin group (19.2 +/- 2.2 vs 9.0 +/- 0.7 ng/mL in controls; P<0.05), an average of 4 d before an increase in the controls. Concentrations of LH in the progesterone group initially increased until Day 14 and then decreased so that by Day 18 the concentrations were lower (P<0.05) than in the control group (12.9 +/- 1.6 vs 20.2 +/- 2.6 ng/mL). Neither the early and prolonged increase nor the early decrease in LH concentrations altered the growth profile of the second-largest follicle, suggesting that LH was not involved in the initiation of deviation. However, the early decrease in LH concentrations in the progesterone group was followed by a smaller (P<0.05) diameter of the largest follicle by Day 20 (26.9 +/- 1.7 mm) than the controls (30.3 +/- 1.7 mm), suggesting that LH was necessary for continued growth of the largest follicle after deviation.  相似文献   

20.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号