首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Cantabrian capercaillie (Tetrao urogallus cantabricus) occupies the southwestern edge of the grouse family distribution range in Eurasia. It is endemic to the Cantabrian Mountains in northwestern Spain and is geographically isolated and separated from the neighboring population in the Pyrenees by a distance of 300 km. Over the last decades, the population has undergone a dramatic decline and is now threatened with extinction. This study presents the genetic analysis of the Cantabrian capercaillie population using non-invasive samples. We performed genotyping of 45 individuals using 20 microsatellites and a sex marker. The data highlight the need for using a large number of markers when considering fragmented small populations. Genetic diversity (HE = 0.50) and average number of alleles (3.40) in the population were low. The population is fragmented into 2 clusters (FST = 0.113) that fit with areas on both sides of the transportation ways that divide its range. Both clusters exhibited additional heterozygote deficits. Geographical distance was negatively correlated with genetic relatedness (r = −0.44, P ≤ 0.001). The data show a recent decline in effective population size that can be related to an ongoing process of population reduction and fragmentation. Conservation actions should focus on the protection of local demes by maintaining a dense network of suitable patches to maximize reproductive output and the number of potential dispersers to reconnect the 2 subpopulations. © 2012 The Wildlife Society.  相似文献   

2.
R. Qiao  X. Li  X. Han  K. Wang  G. Lv  G. Ren  X. Li 《Animal genetics》2019,50(3):262-265
To investigate the population structure and genetic diversity of Henan indigenous pig breeds, samples from a total of 78 pigs of 11 breeds were collected, including four pig populations from Henan Province, three Western commercial breeds, three Chinese native pig breeds from other provinces and one Asian wild boar. The genotyping datasets were obtained by genotyping‐by‐sequencing technology. We found a high degree of polymorphism and rapid linkage disequilibrium decay in Henan pigs. A neighbor‐joining tree, principal component analysis and structure analysis revealed that the Huainan and Erhualian pigs were clustered together and that the Queshan black pigs were clearly grouped together but that the Nanyang and Yuxi pigs were extensively admixed with Western pigs. In addition, heterozygosity values might indicate that Henan indigenous pigs, especially the Queshan black and Huainan pigs, were subjected to little selection during domestication. The results presented here indicate that Henan pig breeds were admixed from Western breeds, especially Nanyang and Yuxi pigs. Therefore, establishment of purification and rejuvenation systems to implement conservation strategies is urgent. In addition, it is also necessary to accelerate genetic resources improvement and utilization using modern breeding technologies, such as genomic selection and genome‐wide association studies.  相似文献   

3.
土生空团菌Cenococcum geophilum是生态系统中广泛分布的外生菌根真菌,具有丰富的遗传多样性和重要的生态功能.为揭示土生空团菌的种群遗传多样性和结构,本研究对采集自中国10个森林地点的桦木科Betulaceae、壳斗科Fagaceae和松科Pinaceae植物根系219份样品高通量测序的土生空团菌ITS2...  相似文献   

4.
The increasing fragmentation of natural habitats may strongly affect patterns of dispersal and gene flow among populations, and thus alter evolutionary dynamics. We examined genetic variation at twelve microsatellite loci in the Agile frog (Rana dalmatina) from 22 breeding ponds in the Iberian Peninsula, the southwest limit of its range, where populations of this species are severely fragmented and are of conservation concern. We investigated genetic diversity, structure and gene flow within and among populations. Diversity as observed heterozygosities ranged from 0.257 to 0.586. The mean number of alleles was 3.6. Just one population showed a significant F IS value. Four populations show evidence of recent bottlenecks. Strong pattern of structure was observed due to isolation by distance and to landscape structure. The average degree of genetic differentiation among populations was F ST = 0.185. Three operational conservation units with metapopulation structure were identified. Additionally, there are some other isolated populations. The results reinforce the view that amphibian populations are highly structured even in small geographic areas. The knowledge of genetic structure pattern and gene flow is fundamental information for developing programmes for the preservation of R. dalmatina at the limits of its geographic distribution.  相似文献   

5.
Over the last several decades many picture-winged Drosophila have become less common in both geographical distribution and local population size (pers. obs., Foote pers. comm., Montgomerey pers. comm.). Here we report on a study of two Hawaiian Drosophila species, D. engyochracea, and D. hawaiiensis, to determine the impact that changes in population sizes over the past thirty years have had on the genetic diversity of these species. D. engyochracea is known from only two locations on the Island of Hawai'i (Kipuka Ki and Kipuka Pua'ulu), while D. hawaiiensis is currently more wide spread across Hawai'i Island. We collected 65 D. hawaiiensis and 66 D. engyochracea from two forest patches (kipuka) isolated by a 400 year old volcanic ash deposit. DNA sequence data for 515 bases of the mitochondrial gene COII was analyzed for both species to estimate relative total genetic diversity as well as inter-kipuka gene flow. The more wide spread species, D. hawaiiensis, has more genetic diversity (23 vs. 11 unique haplotypes) than the rarer species, D. engyochracea. The distribution of haplotypes in the kipuka is consistent with more gene flow in D. engyochracea than in D. hawaiiensis. Phylogenetic analysis indicates a small number of individuals morphologically identified as one species but have DNA sequence diagnostic for the other species. These results are consistent with these individuals being descendant from hybrids between species.  相似文献   

6.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

7.
海南鲌(Culter recurviceps)是我国华南地区重要经济鱼类, 由于受到近些年水利开发、过度捕捞、环境污染等诸多因素的影响, 其资源量快速下降, 亟需得到更多的关注和保护。为保护和合理开发海南鲌种质资源, 本研究采集了华南地区23个地理群体207尾海南鲌样本, 测定了2个线粒体基因(CytbND2)并从Barcode of Life Data System数据库获得相对应线粒体COI基因, 结合多种分析方法(系统发育分析、分化时间估算、单倍型网状图、群体遗传分析和Mantel检验)对海南鲌的遗传结构和遗传多样性展开研究。系统发育分析和单倍型网状图表明华南地区海南鲌群体被分成3个谱系(I、II和III), 其中谱系I和III由珠江的群体组成, 谱系II由海南岛的群体组成。分化时间估算发现3个谱系之间的分化时间介于0.028-0.251 Ma之间, 表明华南地区更新世气候变化可能是造成海南鲌谱系分化的重要原因。群体遗传分析发现海南鲌群体之间存在极显著的遗传分化(FST = 0.511, P < 0.001), 并且符合距离隔离模式(R = 0.348, P = 0.0010)。群体动态历史分析表明, 海南鲌群体可能在0.010-0.025 Ma经历了群体扩张, 表明更新世的气候波动也影响了海南鲌的群体大小和分布。综上所述, 海南鲌群体由3个谱系组成, 更新世气候变化是导致3个谱系分化和影响海南鲌群体动态历史的重要因素。此外, 海南鲌群体之间的遗传分化也可能受到了空间距离的影响。  相似文献   

8.
9.
We investigated genetic and morphological diversity and population structure of 14 traditional sheep populations originating from four ecological zones in Ethiopia (sub-alpine, wet highland, sub-humid lowland and arid lowland). All animals (n = 672) were genotyped for 17 microsatellite markers and scored for 12 morphological characters. The sheep were initially classified as fat-tailed (11 populations), thin-tailed (one population) and fat-rumped sheep (two populations). These classifications are thought to correspond to three consecutive introduction events of sheep from the Near-East into East Africa. For the 14 populations, allelic richness ranged from 5.87 to 7.51 and expected heterozygosity (H(E)) from 0.66 to 0.75. Genetic differentiations (F(ST) values) between all pairs of populations, except between sub-alpine populations, were significantly different from zero (P < 0.001). Cluster analysis of morphological characters and a dendrogram constructed from genetic distances were broadly consistent with the classification into fat-tailed, thin-tailed and fat-rumped sheep. Bayesian cluster analysis using microsatellite markers indicated that there has been further genetic differentiation after the initial introduction of sheep into Ethiopia. Investigation of factors associated with genetic variation showed that an isolation-by-distance model, independently of other factors, explained most of the observed genetic variation. We also obtained a strong indication of adaptive divergence in morphological characters, patterns of morphological variation being highly associated with ecology even when the effect of neutral genetic divergence (F(ST)) was parcelled out in partial Mantel tests. Using a combination of F(ST) values, Bayesian clustering analysis and morphological divergence, we propose a classification of Ethiopian sheep into six breed groups and nine breeds.  相似文献   

10.
Despite intensified interest in conservation of tropical forests, knowledge of the population genetics of tropical forest trees remains limited. We used random amplified polymorphic DNA (RAPD) data to evaluate trends in genetic diversity and differentiation for four tropical tree species, Alchornea latifolia, Dendropanax arboreus, Inga thibaudiana and Protium glabrum . These species occur at contrasting population densities along an elevational gradient and we use RAPD and ecological data to examine natural levels of genetic diversity of each species, trends in genetic variability with population density and structure, genetic differentiation along the elevation gradient, and the relationship between genetic diversity and such factors as seed dispersal and pollination syndrome. At the distances we examined (plot distances ranging from 0.8 to 8.6 km) there was very little genetic structuring at any distance along the gradient. All four species exhibited levels of variation expected for spatial distribution, mating system and pollinator syndrome; greater than 96% of the genetic variation occurred within plots for Inga thibaudiana, Protium glabrum and Dendropanax arboreus. Alchornea latifolia only occurred in a single plot. The results of this study contribute to a growing database of genetic diversity data that can be utilized to make predictions about the effect of disturbance and subsequent reductions in population size on genetic variation and structure in tropical tree species.  相似文献   

11.
药用植物华中五味子的种群遗传多样性及遗传结构   总被引:2,自引:0,他引:2  
华中五味子(Schisandra sphenanthera)是著名的药用植物,具有悠久的药用历史和巨大的开发潜力。为了有效评估、利用和保护华中五味子资源,应用自主开发的9对SSR引物研究了华中五味子自然种群的遗传多样性与遗传结构。结果表明:在10个采样种群中,共检测到58个等位基因,平均预期杂合度HE为0.528,平均观察杂合度HO为0.519,较大的连续种群保持了较高的遗传多样性,而小种群的遗传多样性则相对较低;华中五味子总体表现为显著的杂合子缺失,内繁育系数FIS为0.042;种群间总的遗传分化系数FST为0.108,两两种群间分化显著;贝叶斯聚类结果把10个采样种群按遗传组成分为江南组和江北组2组,长江所形成的特殊地理屏障对华中五味子江南和江北地区间较高的遗传分化造成了影响。  相似文献   

12.
Vernal pool ecosystems are declining throughout California, with only 10% of historic habitat remaining. This has endangered many specialist endemic plant species, leaving extant populations fragmented, isolated, and threatened or endangered. Recovery plans for the increasing number of endangered vernal pool species require information on their genetic and ecological status to guide conservation and restoration efforts. Federally threatened Neostapfia colusana (Colusa grass) and federally endangered Tuctoria greenei (Greene’s tuctoria) are two endemic vernal pool grasses of high conservation concern in central California. Remaining populations are highly fragmented due to range-wide habitat destruction. Using five polymorphic microsatellite markers for each species, we performed genetic surveys of 240 individuals from eight vernal pools for N. colusana, and 317 individuals from 13 vernal pools for T. greenei. We detected high within-population genetic diversity for both species, with average allelic diversities of 24 alleles/locus (mean Hobs = 0.68, mean Hexp = 0.71) for N. colusana, and 19 alleles/locus (mean Hobs = 0.77, and mean Hexp = 0.79) for T. greenei. Bayesian clustering and AMOVA indicated two genetically distinct population groups for N. colusana (Fst = 0.268, P < 0.0001), and three for T. greenei (Fst = 0.11, P < 0.0001). We found very slight temporal genetic structure at one N. colusana (Fst = 0.013, P < 0.05) and two T. greenei (Fst = 0.015, Fst = 0.018, P < 0.05) pools. These estimates of population genetic diversity and structure are critical measures for both species that will help inform recovery management actions.  相似文献   

13.
14.
Bluemask darters (Etheostoma akatulo) were sampled from the four drainages where extant populations of this narrowly endemic freshwater fish are known to exist. Population genetic diversity and structure were assessed at 10 microsatellite loci. All populations exhibited low levels of genetic variation, with expected heterozygosity ranging from 0.2 to 0.35. Significant population subdivision was found among most tributaries, and genetic divergence was strongly correlated with geographic distance. Bayesian population assignment and pairwise population differentiation measures both identified a lack of differentiation between E. akatulo populations inhabiting Cane Creek and the Caney Fork. This observation reduced the number of distinct breeding populations of this species to three. We also used approximate Bayesian computation to compare three models of demographic history in this species. A constant population size model was favored over models that included historic or recent population reductions. Our results suggest that impoundment of the Caney Fork and its tributaries, by completion of Great Falls Dam in 1916, was not responsible for the reduced genetic diversity in the sampled populations. Given the low levels of genetic diversity within populations and the limited geographic distribution, future conservation efforts should seek to maximize available habitat while simultaneously limiting the influences of anthropogenic stressors in the system.  相似文献   

15.

Background  

When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis.  相似文献   

16.
17.
Population genetic diversity influences colonization success   总被引:1,自引:0,他引:1  
Much thought has been given to the individual‐level traits that may make a species a successful colonizer. However, these traits have proven to be weak predictors of colonization success. Here, we test whether population‐level characteristics, specifically genetic diversity and population density, can influence colonization ability on a short‐term ecological timescale, independent of longer‐term effects on adaptive potential. Within experimentally manipulated populations of the weedy herb Arabidopsis thaliana, we found that increased genetic diversity increased colonization success measured as population‐level seedling emergence rates, biomass production, flowering duration, and reproduction. Additive and non‐additive effects contributed to these responses, suggesting that both individual genotypes (sampling effect) and positive interactions among genotypes (complementarity) contributed to increased colonization success. In contrast, manipulation of plant density had no effect on colonization success. The heightened ability of relatively genetically rich populations to colonize novel habitats, if a general phenomenon, may have important implications for predicting and controlling biological invasions.  相似文献   

18.
Because of the economic importance of maize and its scientific importance as a model system for studies of domestication, its evolutionary history is of general interest. We analyzed the population genetic structure of maize races by genotyping 964 individual plants, representing almost the entire set of ~350 races native to the Americas, with 96 microsatellites. Using Bayesian clustering, we detected four main clusters consisting of highland Mexican, northern United States (US), tropical lowland, and Andean races. Phylogenetic analysis indicated that the southwestern US was an intermediary stepping stone between Mexico and the northern US. Furthermore, southeastern US races appear to be of mixed northern flint and tropical lowland ancestry, while lowland middle South American races are of mixed Andean and tropical lowland ancestry. Several cases of post-Columbian movement of races were detected, most notably from the US to South America. Of the four main clusters, the highest genetic diversity occurs in highland Mexican races, while diversity is lowest in the Andes and northern US. Isolation by distance appears to be the main factor underlying the historical diversification of maize. We identify highland Mexico and the Andes as potential sources of genetic diversity underrepresented among elite lines used in maize breeding programs.  相似文献   

19.
Stands of canyon live oak (Quercus chrysolepis, Fagaceae) are maintained for fuelwood, fire management, recreation, and as habitat for wildlife. Information about the link between the oak's reproductive ecology and its extent of genetic diversity is important in developing land management policies that will maintain the long-term viability of populations. Basal sprouting is the primary means of reproduction following fire or cutting, and stands frequently include groups of visibly connected trees in a clustered distribution that suggests cloning. We determined the extent to which clusters of trees were clonal and defined the spatial pattern and diversity of genotypes for six populations across nearly the entire east-west extent of the San Bernardino Mountains in southern California. We mapped over 100 trees at each of five sites and genotyped each tree for allozymes at seven polymorphic loci. We identified clones using these multilocus genotypes and detected an average of 34.4 ± 7.3 (SD) clones per site, most of which had unique genotypes. In general, clustered trees belong to single clones and most clones consist of few trees (mean = 3.4 ± 0.6 trees per clone). However, clone size increased significantly with increased individual heterozygosity, suggesting that selection may favor highly heterozygous clones. Clonal diversity and evenness were high relative to reports for most other clonal species; an average of 97% of clones had distinct genotypes, and Simpson's index of diversity averaged 0.95 ± 0.02. Population genetic analyses of 319 clones from six sites revealed high genetic diversity within sites (mean HS = 0.443). Only a small proportion of the total genetic diversity was explained by variation among sites (mean GST = 0.018), which is consistent with high gene flow among sites (Nm = 9.5). We found no significant substructure among plots within sites, and fixation indices within sites were generally small, suggesting that either little inbreeding occurs, and/or few inbred progeny survive. However, spatial autocorrelation analysis of clones indicated fine-scale genetic structure at distances under 4 m, possibly due to limited seed dispersal. Our data suggest that guidelines for seed collection of canyon live oak for use in restoration can be specified in a manner similar to that recommended for conifer species within the region studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号