首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two antibody immobilisation procedures were compared to set up an immunosensor for goat anti-rabbit immunoglobulin (anti-rIgG), i.e. rIgG covalently bound or immobilised via affinity to protein A (PrA). In both cases, the first layer of protein was covalently bound to a mixed self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) and mercaptohexanol (C6OH) on a gold surface. The elaboration of the sensitive surfaces, as well as their selectivity and sensitivity were studied step by step by polarization modulation-reflection absorption infra-red spectroscopy (PM-RAIRS) and quartz crystal microbalance (QCM) with impedance measurement. QCM measurements showed that the viscoelastic properties of the antibody layer were markedly modified during the antigen recognition when the antibody was bound by affinity to PrA. The specific detection of antigen within a complex medium was assessed by PM-RAIRS thanks to the grafting of cobalt-carbonyl probes. Affinity constants between the immobilised rIgG and the anti-rIgG were determined from PM-RAIRS analysis.  相似文献   

2.
A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.  相似文献   

3.
A batch-type antibody-immobilized quartz crystal microbalance (QCM) system for detecting chloramphenicol (CAP) was developed. To bind an anti-CAP antibody onto the gold electrode surface of piezoelectric crystals, self-assembled monolayers (SAMs) of different thiols or sulfides were formed by a chemisorption procedure. Then, the anti-CAP antibody was covalently linked to the pre-formed monolayers by an activation procedure using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysulfosuccinimide. The antibody-immobilized QCM chip thus prepared was installed in a well holder and was measured for sensor response. Compared with the bare QCM chip and the QCM chip only coated with 3-mercaptopropionic acid (MPA), the antibody-immobilized sensor showed greatly enhanced frequency shifts by 10-50-fold after CAP injection. In this case, CAP detection which was indicated by steady-state resonant frequency shift was accomplished within 10 min. When CAP solution was injected into the reaction cell in 50mM concentration, the frequency shifts obtained were, respectively, 530 and 505 Hz in case of thiosalicylic acid and MPA immobilization. Repeated use of the sensor chips up to eight times was possible after 1 min regeneration with 0.1M NaOH. This system demonstrated a potential application of thiol or sulfide mediated SAMs as the pre-coatings of a real-time detection on CAP in solution.  相似文献   

4.
This study evaluated construction of a highly affinitive quartz crystal microbalance (QCM) immunosensor using anti-C-reactive protein (CRP) antibody and its fragments for CRP detection. Three types of antibody were immobilized on the surface of a QCM via covalent-bounding. Then affinity was evaluated through antigen-antibody binding between CRP and its antibody. Affinity between antigen-antibody was shown to be highest when anti-CRP F(ab')2-IgG antibody (70 microg/mL) was immobilized on the QCM. In case of anti-CRP F(ab')2-IgG antibody, affinity which was attributable to antigen-antibody binding was almost twice that of anti-CRP IgG antibody, which is used conventionally for QCM immunosensors. In addition, when it was treated with 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate, so-called MPC polymer, highly affinitive and selective immunosensing for CRP was achieved without non-specific binding from plasma proteins in human serum. When anti-CRP F(ab')2-IgG antibody was immobilized on the QCM, the detection limit and the linearity of CRP calibration curve were achieved at concentrations from 0.001 to 100 microg/dL even during investigation in serum samples. Experimental results verified the successful construction of a highly affinitive and selective QCM-immunosensor which was modified with anti-CRP F(ab')2-IgG antibody and MPC polymer.  相似文献   

5.
A dual channel surface acoustic wave (SAW) device has been used as a biosensor to detect two different microorganisms, Legionella and Escherichia coli, simultaneously. A series of experiments was conducted to optimise the use of the SAW for bacterial detection using a novel protocol of coating bacteria on the sensor surface prior to addition of the antibody. Results were compared with an experiment in which a conventional protocol was utilised, where antibody was coated on the sensor surface prior to exposure to bacteria. The concentration of bacteria that attached to the surface of the SAW device was related to the antibody that specifically bound to it and therefore to frequency in a dose dependent fashion. Unlike conventional microbiological techniques quantitative results can be obtained for Legionella and E. coli down to 10(6) cells per ml within 3 h. In addition E. coli was detected down to 10(5) cells per ml in a modified protocol using sheep IgG as a blocking agent.  相似文献   

6.
A sensitive and selective immunosensor for the nonlabeled detection of sulfate-reducing bacteria (SRB) is constructed using a self-polymerised polydopamine film as the immobilisation platform. Self-polymerisation of dopamine is used as a powerful approach for applying multifunctional coatings onto the surface of a gold electrode. The polydopamine film is used not only as the immobilisation platform, but also as a cross-linker reagent for the immobilisation of the anti-SRB antibody. The polydopamine film is loaded with a high density of anti-SRB antibodies linked to the substrate to obtain high response signals. The formation and fabrication of the biosensor and the quantification of antibody anchoring are monitored, and SRB detection is performed by either quartz crystal microbalance (QCM) or electrochemical impedance spectroscopy (EIS). After modeling the impedance Nyquist plots of the SRB/anti-SRB/polydopamine/gold electrode for increasing concentrations of SRB, the electron transfer resistance (R(ct)) is used as a measure of immunocomplex binding. The R(ct) is correlated with the concentration of bacterial cells in the range of 1.8×10(2) to 1.8×10(6) CFU mL(-1); the detection limit is 50 CFU mL(-1). This work demonstrates a new immobilisation platform for the development of a sensitive and label-less impedimetric and piezoelectric immunosensor. This immunosensor may be broadly applied in clinical diagnoses and the monitoring of water environmental pollution. The method proposed is distinct in its ease of application, use of a simple protocol, and mild reaction conditions. These allow it to be applied to a wide variety of materials.  相似文献   

7.
The binding affinity between human immunoglobulin G (IgG) and protein A was studied by the homebuilt wireless-electrodeless quartz crystal microbalance (QCM). Protein A was immobilized on the electrodeless AT-cut quartz plate of 0.05 mm thick and its fundamental resonance frequency near 34 MHz was measured by a noncontacting manner using a line antenna. The vibrational analysis was performed to ensure higher sensitivity of the electrodeless QCM. A flow-cell system was fabricated to continuously measure the resonance frequency during the injection sequence of the IgG solutions with concentrations of 1-20,000 ng/mL. The exponential frequency changes were recorded to determine the affinity based on the Langmuir kinetics. The equilibrium constant K(A) significantly varied between 6 x 10(6) and 6 x 10(10) M(-1), depending on the IgG concentration, which is attributed to various formations of IgG-protein A complexes.  相似文献   

8.
An immunosensing system based on a quartz crystal microbalance (QCM) is presented for the selection of both antigen specific recombinant antibodies and antigen specific human pancreatic secretory trypsin inhibitor (hPSTI) mutants isolated from large phage libraries. The QCM was integrated into a flow injection analysis system for the straightforward analysis of large sample numbers. Measurements were performed using a biotinylated antigen immobilized by streptavidin onto the gold surface of the quartz crystal and phages displaying recombinant antibodies or hPSTI mutants. The results obtained by the QCM were in accordance to those of a well established enzyme linked immunosorbent assay (ELISA). Therefore, the QCM is well suited for the detection of single high affinity clones isolated from large phage display libraries.  相似文献   

9.
Wang H  Wu J  Li J  Ding Y  Shen G  Yu R 《Biosensors & bioelectronics》2005,20(11):2210-2217
A general design strategy for immunosensing platforms has been proposed on the basis of Nanogold particle-enhanced oriented adsorption of antibody fragments. Quartz crystal microbalance (QCM) as a model transducer was fabricated with plasma-polymerized film (PPF) of n-butyl amine and then with nanogold particles resulting in a PPF-nanogold adsorption procedure for half-IgG fragments obtained by reduction of intact immunoglobulin (IgG). Thermodynamic studies reveal that the proposed procedure is superior to the traditional oriented ones in that it created immunosurface of increased antibody surface density (amount) and antigen binding constants. Sensors produced according to the new immobilization procedure exhibit better immunosensing performances including high sensitivity, fast response rate, and favorable operational stability etc. This Nanogold particle-enhanced immobilization technique may be tailored as a promising alternative for various immunosensing platforms in solid-phase immunoassay and affinity chromatography.  相似文献   

10.
This study synthesizes a tethered surface-grafted poly(acrylic acid) with quartz crystal microbalance (QCM) surfaces and provides detailed analysis of their properties and application. A tethered polyelectrolyte brush of poly(acrylic acid) is generated by first covering the substrate with a plasma-polymerized allyl alcohol (pp-AA) film, changing the polymerization initiators (bromination), and then grafting through atom transfer radical polymerization (ATRP) of tert-butyl acrylate (t-BA); these initiators are immobilized on a surface and exposed to a monomer. Finally, we convert the poly(t-BA) brush into poly(acrylic acid) through hydrolysis. We use the QCM technique to measure configuration change of the tethered poly(acrylic acid) grafted chains with two different degrees of polymerization (DP=50,200) in aqueous solutions at three different pH values (4.0, 4.8, and 5.4). The tethered poly(acrylic acid) grafted QCM shows that repeatable frequency responses are induced by pH change of solution. These frequency responses of large DP for pH are 20 times larger than responses of lower DP for pH. The frequency response of antibody immobilization on tethered poly(acrylic acid) grafted QCM (DP=200) and its frequency response of immunoreaction are 10 times larger than conventional immobilization methods by cysteamine with glutalaldehyde coupling of the antibody. The tethered poly(acrylic acid) grafted QCM can increase the frequency response for pH, the immobilization amount of antibody, and immunosensor response.  相似文献   

11.
Electrical impedance analysis has been used to study anti-human immunoglobulin G (anti-h IgG) adsorption and the subsequent human immunoglobulin G (hIgG) or rabbit immunoglobulin G (rIgG) affinity reaction in aqueous liquids on a polystyrene (PS)-modified quartz crystal microbalance (QCM) surface. Time-dependent adsorption data of both the frequency shift and the electrical equivalent parameters (motional resistance, shunt capacitance, quality factor, etc) are monitored. It was found that the motional resistance, R, increases while the resonance frequency, f, decreases during both the anti-h IgG immobilization and the subsequent affinity process. Decreasing f primarily arises from the increased mass loading. Increasing R indicates more power dissipation (increased losses) in the system. The change in motional resistance, delta R, in the affinity reaction is considerably larger than that in anti-h IgG immobilization adsorption process, although the resonant frequency shifts, delta f, are very close in these two processes. Specifically, for a saturated solution, the ratio of delta R/delta f is 9.45 x 10 (-3) Omega/Hz for anti-h IgG adsorption and 28.1 x 10 (-3) omega/Hz for anti-h IgG/hIgG binding respectively, indicating the increased power dissipation with the increasing binding molecules. The shunt capacitance changes little in the hIgG binding process ( approximately 0.01 pF).  相似文献   

12.
Quartz crystal microbalance immunosensors for environmental monitoring   总被引:1,自引:0,他引:1  
This paper presents discussion of quartz crystal microbalance (QCM) immunosensors for environmental monitoring. Factors limiting the practical application of antibodies to analytical problems are also presented. Among several candidates for the QCM immunosensor device, selected QCM devices and oscillating circuits were tested thoroughly and developed to obtain highly stable and sensitive frequency signals. The biointerface of QCM immunosensor was designed and controlled to immobilize antibody on the QCM surface, to reduce non-specific binding and to suppress denaturation of immobilizing antibody by self-assembled monolayer technique and artificial phospholipid (2-methacryloyloxyethyl phosphorylcholine (MPC)) polymer. MPC polymer as a antibody-stabilizing reagent was added to reduce non-specific binding of the antigen solution and stabilize the immunologic activity of the antibody-immobilized QCM. In addition, it provides examples for detection and quantitation of environmental samples using QCM immunosensors. The analytical results for fly ash extracted samples of dioxins using the QCM immunosensor indicated a good relationship with GC/MS methods. The integrating protocols of the competitive immunoassay and signal-enhancing step are for detecting low molecular analytes with extremely low detection limits using an QCM immunosensor. Furthermore, its detect limitation was extended from 0.1 to 0.01 ng/ml by the signal-enhancing step when the anti-bisphenol-A antibody conjugated MPC polymeric nanoparticles was used. The QCM immunosensor method has demonstrated its effectiveness as an alternative screening method for environmental monitoring because these results were compared with results obtained through environmental monitoring methods such as ELISA and GC/MS.  相似文献   

13.
Langerhans cells in the epidermis of skin are potent antigen-presenting cells that trigger the immune system to respond to invading microorganisms. We have previously shown that epidermal powder immunization with a powdered inactivated influenza virus vaccine, by targeting the Langerhans cell-rich epidermis, was more efficacious than deeper tissue injection using a needle and syringe. We now report enhanced humoral and cellular immune responses to recombinant hepatitis B surface antigen following epidermal powder immunization. We observed that epidermal powder immunization with unadjuvanted hepatitis B surface antigen elicited an antibody titre equivalent to that induced by the alum-adjuvanted vaccine delivered by intramuscular injection, suggesting that epidermal powder immunization can overcome the need for adjuvantation. We demonstrated that synthetic CpG oligonucleotides (CpG DNA) could be coformulated with hepatitis B surface antigen and delivered by epidermal powder immunization to further augment the antibody response and modulate T helper cell activities. Epidermal powder immunization of hepatitis B surface antigen formulated with CpG DNA formulations resulted in 1.5-2.0 logs higher IgG antibody titres than alum-adjuvanted commercial vaccines administered by intramuscular injection. Formulation of hepatitis B surface antigen with CpG DNA elicited an augmented IgG2a antibody response and increased frequency of IFN-gamma secreting cells. In addition, CpG DNA was found to activate epidermal Langerhans cells and stimulate the production of TNF-alpha and IL-12 cytokines by epidermal cells, explaining its strong adjuvant activity following epidermal powder immunization. These results show that epidermal powder immunization is a safe and effective method to deliver hepatitis B surface antigen and the addition of new adjuvants, such as CpG DNA, may further enhance the efficacy of this vaccine.  相似文献   

14.
CIA07 is an immunostimulatory agent composed of bacterial DNA fragments and modified lipopolysaccharide, which has antitumor activity against bladder cancer in mice. In this study, the adjuvant activity of CIA07 was evaluated using hepatitis B virus surface antigen (HBsAg) as the immunogen. Mice were immunized intramuscularly three times at 1-week intervals with HBsAg alone or in combination with alum, bacterial DNA fragments, modified lipopolysaccharide, CIA07 or CpG1826, and immune responses were assessed. At 1 week after the final injection, the HBsAg-specific total serum IgG antibody titer in CIA07-treated mice was 14 times higher than that in animals administered antigen alone, six times higher than in mice given alum or bacterial DNA fragments and twice as high as those treated with modified lipopolysaccharide or CpG1826, and remained maximal until 8 weeks postimmunization. Animals receiving antigen alone or plus alum displayed barely detectable HBsAg-specific serum IgG2a antibody responses. However, coadministration of CIA07 with antigen led to markedly enhanced serum IgG2a antibody titer and IFN-gamma(+) production in splenocytes, indicating that CIA07 effectively induces Th1-type immune responses. In addition, the number of HBsAg-specific CD8(+) T cells in peripheral blood mononuclear cells was elevated in CIA07-treated mice. These data clearly demonstrate that CIA07 is able to induce both cellular and humoral immune responses to HBsAg, and confirm its potential as an adjuvant in therapeutic vaccines for hepatitis B virus infections.  相似文献   

15.
Mass-sensitive, magnetoelastic resonance sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted by the sensor in response to an applied, time varying, magnetic field. This magnetostrictive platform has a unique advantage over conventional sensor platforms in that measurement is wireless and remote. A biosensor for the detection of Salmonella typhimurium was constructed by immobilizing a polyclonal antibody (the bio-molecular recognition element) onto the surface of a magnetostrictive platform. The biosensor was then exposed to solutions containing S. typhimurium bacteria. Binding between the antibody and antigen (bacteria) occurred and the additional mass of the bound bacteria caused a shift in the sensor's resonant frequency. Sensors with different physical dimensions were exposed to different concentrations of S. typhimurium ranging from 10(2) to 10(9)CFU/ml. Detection limits of 5x10(3) CFU/ml, 10(5) CFU/ml and 10(7) CFU/ml were obtained for sensors with the size of 2 mmx0.4 mmx15 microm, 5 mmx1 mmx15 microm and 25 mmx5 mmx15 microm, respectively. Good agreement between the measured number of bound bacterial cells (as measured by scanning electron microscopy (SEM)) and frequency shifts was obtained.  相似文献   

16.
Effects of LPS on primary and secondary antibody responses to typical TI-2 antigens were investigated in mice. Simultaneous injection of LPS with a TI-2 antigen showed only little adjuvant effect on the following primary antibody response to the antigen. In contrast, either a single or multiple injections of LPS, prior to the immunization with a TI-2 antigen, significantly augmented the following primary antibody response to the antigen. LPS, however, inhibited the development of B-cell memory to a TI-2 antigen when administered together with the antigen. Moreover, an injection of LPS in mice, which had strong IgM and IgG B-cell memories to a TI-2 antigen, caused disappearance or profound reduction of the memories. The results suggest that LPS produced by gram-negative bacteria exerts inhibitory effects on the development and continuation of B-cell memory to bacterial infections.  相似文献   

17.
It was demonstrated that mycoplasmas, gram-negative bacteria, and certain gram-positive bacteria share a similar protein antigen with a molecular weight ranging from 42,000 to 48,000. Western blotting (immunoblotting) with an antibody specific to a 43-kDa membrane protein of Mycoplasma fermentans showed the existence of this protein antigen in all Mycoplasma spp. tested (14 species), Acholeplasma laidlawii (1 strain), and gram-negative bacteria (8 species) but only in Staphylococcus aureus of four gram-positive species tested. Neither Ureaplasma urealyticum nor mammalian cell cultures showed any cross-reactions with this antibody. These proteins were found in both cytoplasmic and membrane fractions of mycoplasma cells but were not exposed on the surface of mycoplasmal or bacterial cells.  相似文献   

18.
In this study, a quartz crystal microbalance (QCM) system operated repetitively in flow injection analysis (FIA) mode, is reported. Four immobilization approaches of seven different methods include: (i) physical adsorption; (ii) two thioamine thiolation methods, using cysteamine and cystamine for gold chemisorption and further coupling; (iii) two oxidized dextran spacer methods, coupling of cysteamine and cystamine thiolated QCM surface with periodate-oxidized dextran for further Schiff acid-base reaction; and (iv) two thiol-gold chemisorption-based self-assembled monolayer (SAM), applying short-chain, C(3), and long-chain, C(11), mercapto fatty acids to insolubilize human serum albumin (HSA) on QCM surface. Effects of these protein immobilization methods on FIA immunoassay of anti-HSA were compared. At the 0.01 mg/ml anti-HSA level, the lowest analyte concentration tested, the SAM using 11-mercaptoundecanoic acid as QCM surface activating agent generated a larger frequency shift than the other immobilization methods. This implied that the use of thiolated long-chain fatty acid constructed as self-assembled monolayer may thereby potentially be a useful protein immobilization method in QCM-FIA application.  相似文献   

19.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

20.
In this work, a new methodology is developed for selection of affinity ligands towards the enzyme “trypsin” using quartz crystals microbalance (QCM) technique. To achieve this goal, the surface amination of gold plated QCM crystals was achieved in 13.56 MHz plasma polymerization system by using ethylenediamine. Three different ligands (i.e., 4-aminobenzamidine, 4-aminobenzoic acid, and phenylalanine) were immobilized on the aminated QCM crystals surface via glutaraldhyde coupling. All three ligand immobilized QCM crystals were characterized and compared under different experimental conditions. It was observed that the benzamidine ligand showed higher affinity to trypsin with a dissociation constant on the order of 1.76 × 10−9 M, which is within the range of 10−4–10−8 M for affinity ligands. Thus, its selectivity was suitable for purification of trypsin from biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号