首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scleractinian corals, which include the architects of coral reefs, are found throughout the world's oceans and have left a rich fossil record over their 240 million year history. Their classification has been marked by confusion but recently developed molecular and morphological tools are now leading to a better understanding of the evolutionary history of this important group. Although morphological characters have been the basis of traditional classification in the group, they are relatively few in number. In addition, our current understanding of skeletal growth and homology is limited, and homoplasy is rampant, limiting the usefulness of morphological phylogenetics. Molecular phylogenetic hypotheses for the order, which have been primarily focused on reef-building corals, differ significantly from traditional classification. They suggest that the group is represented by two major lineages and do not support the monophyly of traditional suborders and most traditional families. It appears that once a substantial number of azooxanthellate taxa are included in molecular phylogenetic analyses, basal relationships within the group will be clearly defined. Understanding of relationships at lower taxonomic levels will be best clarified by combined analyses of morphological and molecular characters. Molecular phylogenies are being used to inform our understanding of the evolution of morphological characters in the Scleractinia. Better understanding of the evolution of these characters will help to integrate the systematics of fossil and extant taxa. We demonstrate how the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics.  相似文献   

2.
Relationships among families and suborders of scleractinian corals are poorly understood because of difficulties 1) in making inferences about the evolution of the morphological characters used in coral taxonomy and 2) in interpreting their 240-million-year fossil record. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 16S ribosomal gene from taxa of 14 families of corals and the use of this gene segment in a phylogenetic analysis of relationships within the order. We show that sequences obtained from scleractinians are homologous to other metazoan 16S ribosomal sequences and fall into two distinct clades defined by size of the amplified gene product. Comparisons of sequences from the two clades demonstrate that both sets of sequences are evolving under similar evolutionary constraints: they do not differ in nucleotide composition, numbers of transition and transversion substitutions, spatial patterns of substitutions, or in rates of divergence. The characteristics and patterns observed in these sequences as well as the secondary structures, are similar to those observed in mt 16S ribosomal DNA sequences from other taxa. Phylogenetic analysis of these sequences shows that they are useful for evaluating relationships within the order. The hypothesis generated from this analysis differs from traditional hypotheses for evolutionary relationships among the Scleractinia and suggests that a reevaluation of evolutionary affinities in the order is needed. Received: 4 September 1996 / Accepted: 7 April 1997  相似文献   

3.
The supertree algorithm matrix representation with parsimony was used to combine existing hypotheses of coral relationships and provide the most comprehensive species-level estimate of scleractinian phylogeny, comprised of 353 species (27% of extant species), 141 genera (63%) and 23 families (92%) from all seven suborders. The resulting supertree offers a guide for future studies in coral systematics by highlighting regions of concordance and conflict in existing source phylogenies. It should also prove useful in formal comparative studies of character evolution. Phylogenetic effort within Scleractinia has been taxonomically uneven, with a third of studies focussing on the Acroporidae or its most diverse genera. Sampling has also been geographically non-uniform, as tropical, reef-forming taxa have been considered twice as often as non-reef species. The supertree indicated that source trees concur on numerous aspects of coral relationships, such as the division between robust versus complex corals and the distant relationship between families in Archaeocoeniina. The supertree also supported the existence of a large, taxonomically diverse and monophyletic group of corals with many Atlantic representatives having exsert corallites. Another large, unanticipated clade consisted entirely of solitary deep-water species from three families. Important areas of ambiguity include the relationship of Astrocoeniidae to Pocilloporidae and the relative positions of several, mostly deep-water genera of Caryophylliidae. Conservative grafting of species at the base of congeneric groups with uncontroversial monophyletic status resulted in a more comprehensive, though less resolved tree of 1016 taxa.  相似文献   

4.

Background

Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia.

Methodology

Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.

Principal Findings/Conclusions

There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia.  相似文献   

5.
Taxonomic relationships within the corals and anemones (Phylum Cnidaria: Class Anthozoa) are based upon few morphological characters. The significance of any given character is debatable, and there is little fossil record available for deriving evolutionary relationships. We analyzed complete 18S ribosomal sequences to examine subclass-level and ordinal-level organization within the Anthozoa. We suggest that the Subclass Ceriantipatharia is not an evolutionarily relevant grouping. The Order Corallimorpharia appears paraphyletic and closely related to the Order Scleractinia. The 18S rRNA gene may be insufficient for establishing robust phylogenetic hypotheses concerning the specific relationships of the Corallimorpharia and the Ceriantharia and the branching sequence for the orders within the Hexacorallia. The 18S rRNA gene has sufficient phylogenetic signal, however, to distinguish among the major groupings within the Class Anthozoa, and we use this information to suggest relationships for the enigmatic taxa Dactylanthus and Dendrobrachia.  相似文献   

6.
A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony analysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudiniformes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Aliolimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined.  相似文献   

7.
We used mitochondrial/nuclear gene sequence analyses to determine the historical relationships of the endemic species of Todus (Aves: Todidae) from the Caribbean. We collected 1920-bp of nucleotide sequence data from the mitochondrial genes cytochrome b, ATPase 6, ATPase 8, and 591-bp of the single-copy nuclear gene c-mos for all Todus species and representatives of their outgroup taxa (Hylomanes, Barypthengus, Chloroceryle, Ceryle, and Galbula) to reconstruct the evolutionary history (via parsimony and maximum likelihood) of the five Todus species. The substitution rates among the mitochondrial genes were found to be much higher than the substitution rate for the c-mos gene, consequently resulting in higher substitutional saturation for the mitochondrial genes. When we applied weighting schemes to account for the variance in substitutional heterogeneity among the genes then parsimony and likelihood analyses both demonstrate that the genus Todus is monophyletic and closer to the Hylomanes and Barypthengus genera than the Chloroceryle and Ceryle genera. The mitochondrial-gene trees and nuclear-gene trees both show similar results, thus providing support for the relationships among the taxa from loci within two independently evolving genomes. The nuclear gene c-mos was found, therefore, to be a viable nuclear gene candidate for resolving intermediate and deep divergences.  相似文献   

8.
Recent phylogenetic analyses have demonstrated the limits of traditional coral taxonomy based solely on skeletal morphology. In this phylogenetic context, Faviidae and Mussidae are ecologically dominant families comprising one third of scleractinian reef coral genera, but their phylogenies remain partially unresolved. Many of their taxa are scattered throughout most of the clades of the Robust group, and major systematic incongruences exist. Numerous genera and species remain unstudied, and the entire biogeographic area of the Indian Ocean remains largely unsampled. In this study, we analyzed a portion of the mitochondrial cytochrome c oxidase subunit 1 gene and a portion of ribosomal DNA for 14 genera and 27 species of the Faviidae and Mussidae collected from the Indian Ocean and New Caledonia and this is the first analysis of five of these species. For some taxa, newly discovered evolutionary relationships were detected, such as the evolutionary distinctiveness of Acanthastrea maxima, the genetic overlap of Parasimplastrea omanensis and Blastomussa merleti, and the peculiar position of Favites peresi in clade XVII together with Echinopora and Montastraea salebrosa. Moreover, numerous cases of intraspecific divergences between Indian Ocean and Pacific Ocean populations were detected. The most striking cases involve the genera Favites and Favia, and in particular Favites complanata, F. halicora, Favia favus, F. pallida, F. matthaii, and F. rotumana, but divergence also is evident in Blastomussa merleti, Cyphastrea serailia, and Echinopora gemmacea. High morphological variability characterizes most of these taxa, thus traditional skeletal characteristics, such as corallite arrangement, seem to be evolutionary misleading and are plagued by convergence. Our results indicate that the systematics of the Faviidae and the Mussidae is far from being resolved and that the inclusion of conspecific populations of different geographical origin represents an unavoidable step when redescribing the taxonomy and systematics of scleractinian corals. More molecular phylogenies are needed to define the evolutionary lineages that could be corroborated by known and newly discovered micromorphological characters.  相似文献   

9.
The phylogenetic relationships of 14 species of the Antarctic amphipod families Epimeriidae and Iphimediidae were investigated using 553bp of the gene for the mitochondrial cytochrome oxidase subunit I (COI) and 98 morphological characters. Both families are dominant members of the Antarctic benthic amphipod community. In contrast to previous studies, our molecular and morphological data suggest that the families Epimeriidae and Iphimediidae may not be sister taxa. Our study suggests that Iphimediidae are more closely related to Eusirus (Eusiridae) than to Epimeria (Epimeriidae). Phylogenetic analyses based on maximum parsimony (MP) and maximum likelihood (ML) indicate that the genera Iphimediella and Gnathiphimedia are not monophyletic.  相似文献   

10.
11.
Abstract Phylogenetic relationships among the genera of the large braconid wasp subfamily Microgastrinae were explored using DNA sequence data from the mitochondrial large ribosomal subunit (16S), nuclear large ribosomal subunit (28S) and mitochondrial cytochrome oxidase (COI) genes, along with morphological characters, both new and from previous studies. The taxonomic history of this group of wasps is reviewed, along with a critique of previous phylogenetic studies on the group. Molecular data were sampled from forty-six species representing twenty-six genera of microgastrines, plus three species representing the close outgroup taxa Cardiochilinae and Miracinae. Some 2300 base pairs of aligned sequence were obtained per taxon from the three genes. In addition, fifty-three morphological characters were coded for all known genera, including two undescribed genera, except Semionis Nixon (known from only a single male type specimen). Relationships among several groups of genera are clarified and challenge some major assumptions made in earlier classifications. In particular, it is clear that dependence on one or a few major morphological character systems oversimplifies relationships, and can lead to misleading results. Despite the large amount of data analysed, basal divergences within the subfamily remain poorly resolved and essentially unsupported in any rigorous statistical sense.  相似文献   

12.
Although Codfishes are probably one of the most studied groups of all teleost fishes worldwide owing to their great importance to fisheries, their phylogeny and classification are still far from being firmly established. In this study, we present phylogenetic relationships of 19 out of 22 genera traditionally included in the Gadidae based on the analysis of entire cytochrome b and partial cytochrome oxidase I genes (1530 bp). Maximum Parsimony, Maximum Likelihood, and Bayesian analyses all recovered five main clades that correspond to traditionally recognized groupings within Gadoids. The same clades were recovered with MP analysis based on 30 morphological characters (collected from the literature). Given these findings, we propose a revised provisional classification of Gadoids: one suborder Gadoidei containing two families, the Merlucciidae (1 genus) and the Gadidae (21 genera) distributed into four subfamilies: the Gadinae (12 genera), the Lotinae (3 genera), the Gaidropsarinae (3 genera), and the Phycinae (3 genera). Lastly, nuclear inserts of mitochondrial DNA (Numts) were identified in two species, i.e., Gadiculus argenteus and Melanogrammus aeglefinus.  相似文献   

13.
Aim Globally, species distribution patterns in the deep sea are poorly resolved, with spatial coverage being sparse for most taxa and true absence data missing. Increasing human impacts on deep‐sea ecosystems mean that reaching a better understanding of such patterns is becoming more urgent. Cold‐water stony corals (Order Scleractinia) form structurally complex habitats (dense thickets or reefs) that can support a diversity of other associated fauna. Despite their widely accepted ecological importance, records of scleractinian corals on seamounts are patchy and simply not available for most of the global ocean. The objective of this paper is to model the global distribution of suitable habitat for stony corals on seamounts. Location Seamounts worldwide. Methods We compiled a database containing all accessible records of scleractinian corals on seamounts. Two modelling approaches developed for presence‐only data were used to predict global habitat suitability for seamount scleractinians: maximum entropy modelling (Maxent) and environmental niche factor analysis (ENFA). We generated habitat‐suitability maps and used a cross‐validation process with a threshold‐independent metric to evaluate the performance of the models. Results Both models performed well in cross‐validation, although the Maxent method consistently outperformed ENFA. Highly suitable habitat for seamount stony corals was predicted to occur at most modelled depths in the North Atlantic, and in a circumglobal strip in the Southern Hemisphere between 20° and 50° S and shallower than around 1500 m. Seamount summits in most other regions appeared much less likely to provide suitable habitat, except for small near‐surface patches. The patterns of habitat suitability largely reflect current biogeographical knowledge. Environmental variables positively associated with high predicted habitat suitability included the aragonite saturation state, and oxygen saturation and concentration. By contrast, low levels of dissolved inorganic carbon, nitrate, phosphate and silicate were associated with high predicted suitability. High correlation among variables made assessing individual drivers difficult. Main conclusions Our models predict environmental conditions likely to play a role in determining large‐scale scleractinian coral distributions on seamounts, and provide a baseline scenario on a global scale. These results present a first‐order hypothesis that can be tested by further sampling. Given the high vulnerability of cold‐water corals to human impacts, such predictions are crucial tools in developing worldwide conservation and management strategies for seamount ecosystems.  相似文献   

14.
Reassessing evolutionary relationships of scleractinian corals   总被引:3,自引:0,他引:3  
The widely accepted family tree of Scleractinia published by Wells, based on a combination of morphological coral taxonomy and the fossil record, has recently been revised by Veron. It is now possible to test the validity of some of the conclusions reached by these and other authors by the use of molecular techniques. This paper reviews the results to date. Studies of ribosomal DNA have shown that the Scleractinia are monophyletic, i.e. derived from the same ancestral taxon. Extensions of this same data set now indicate that the Poritidae and Dendrophylliidae, with their fossil antecedents, may each warrant separate suborder status. They further suggest (a) that the Suborder Faviina (faviids, mussids and their allies) should probably be retained as a monophyletic group and (b) that Wells' original account of the isolated position of the Pocilloporidae and Astrocoeniidae is correct. These conclusions all accord with Veron's family tree. However, the Fungiina, even after removal of the Poritidae, are unlikely to be a monophyletic group at suborder level. The molecular data further show that externally observable morphological characters used in the taxonomy of extant corals distinguish families more reliably than do internal micro-skeletal characters frequently used in coral palaeontology.  相似文献   

15.
Coral taxonomy and systematics continue to be plagued by a host of problems. Due to high phenotypic variability within species, morphological approaches have often failed to recognize natural taxa, and molecular techniques have yet to be applied to many groups. Here, we summarize the levels of paraphyly found for scleractinian corals and test, based on new data, whether paraphyly is also a significant problem in Faviidae, the second-most speciose hermatypic scleractinian family. Using both DNA sequence and morphological data we find that, regardless of analysis technique (maximum parsimony, maximum likelihood and Bayesian likelihood), many conventional taxonomic groups are not monophyletic. Based on two mitochondrial markers (COI and a noncoding region) that we amplified for 81 samples representing 41 faviid species and 13 genera, five genera that are represented by more than one species are paraphyletic, as is the family Faviidae. The morphological characters currently used to identify these corals similarly fail to recover many genera. Furthermore, trees based on both data types are incongruent, and total evidence analysis does little to salvage conventional taxonomic groupings. Morphological convergence, phenotypic variability in response to the environment, and recent speciation are likely causes for these conflicts, which suggest that the present classification of corals is in need of a major overhaul. We propose more detailed studies of problematic faviid taxa using standardized morphological, mitochondrial, and nuclear genetic markers to facilitate combining of data.  相似文献   

16.
The satyrine butterfly subtribe Mycalesina has undergone one of the more spectacular evolutionary radiations of butterflies in the Old World tropics. Perhaps the most phenotypically pronounced diversification of the group has occurred in the Malagasy region, where 68 currently recognized species are divided among five genera. Here, we report the results of phylogenetic analyses of sequence data from the cytochrome c oxidase II and cytochrome b mitochondrial genes, for a total of 54 mycalesine taxa, mostly from Madagascar. These molecular data complement an existing data set based on male morphological characters. The molecular results support the suggestion from morphology that three of the five Malagasy genera are paraphyletic and support the monophyly of at least three major morphological clades. Novel hypotheses of terminal taxon pairs are generated by the molecular data. Dense taxon sampling appears to be crucial for elucidating phylogenetic relationships within this large radiation. A potentially complex scenario for the origin of Malagasy mycalesines is proposed.  相似文献   

17.
Scleractinian systematics have undergone rapid changes due to increased use of molecular phylogenetics and new perspectives on skeletal morphology from micromorphology and microstructure. Despite this increase in characters there are still unresolved clades in the phylogeny, indicating that more characters are needed. This study investigates a new source of morphological data within the soft tissue of Indo‐Pacific scleractinian corals. Features of tissue layers, especially cnidocytes, are described in hematoxylin and eosin stained thin sections. Based on this new histological data source, a combined analysis with mitochondrial DNA and skeletal data is performed using parsimony and Bayesian analysis. Parsimony analysis yields three most‐parsimonious trees similar to trees based on Bayesian analysis. Character maps are also produced that show origination of histomorphological traits at deep nodes within the phylogeny. In general, both analyses retain the previously designated families Lobophylliidae and Merulinidae, but some genera are found to be paraphyletic. Nonetheless, the combined analysis produces a highly resolved and well‐supported phylogeny, which could lead to more effective use of biological conservation metrics based on evolutionary distinctiveness. These results show for the first time that inclusion of histomorphological characters improves the resolution of phylogenetic analyses of reef corals. J. Morphol. 277:494–511, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
The family Percidae is among the most speciose families of northern hemisphere fishes with > 178 178 North American species and 14 Eurasian species. Previous phylogenetic studies have been hampered by a lack of informative characters, inadequate taxonomic sampling, and conflicting data. We estimated phylogenetic relationships among 54 percid species (9 of 10 genera and all but one subgenus of darters) and four outgroup taxa using mitochondrial DNA data from the 12S rRNA and cytochrome b genes. Four primary evolutionary lineages were consistently recovered: Etheostomatinae (Ammocrypta, Crystallaria, Etheostoma, and Percina), Perca, Luciopercinae (Romanichthys, Sander, and Zingel), and Gymnocephalus. Except Etheostoma and Zingel, all polytypic genera were monophyletic. The Etheostoma subgenus Nothonotus failed to resolve with other members of the genus resulting in a paraphyletic Etheostoma. The subfamily Percinae (Gymnocephalus and Perca) was not recovered in phylogenetic analyses with Gymnocephalus sister to Luciopercinae. Etheostomatinae and Romanichthyini were never resolved as sister groups supporting convergent evolution as the cause of small, benthic, stream-inhabiting percids in North American and Eurasian waters.  相似文献   

19.
The resolution of higher level phylogeny of the coleoid cephalopods (octopuses, squids, and cuttlefishes) has been hindered by homoplasy among morphological characters in conjunction with a very poor fossil record. Initial molecular studies, based primarily on small fragments of single mitochondrial genes, have produced little resolution of the deep relationships amongst coleoid cephalopod families. The present study investigated this issue using 3415 base pairs (bp) from three nuclear genes (octopine dehydrogenase, pax-6, and rhodopsin) and three mitochondrial genes (12S rDNA, 16S rDNA, and cytochrome oxidase I) from a total of 35 species (including representatives of each of the higher level taxa). Bayesian analyses were conducted on mitochondrial and nuclear genes separately and also all six genes together. Separate analyses were conducted with the data partitioned by gene, codon/rDNA, gene+codon/rDNA or not partitioned at all. In the majority of analyses partitioning the data by gene+codon was the appropriate model with partitioning by codon the second most selected model. In some instances the topology varied according to the model used. Relatively high posterior probabilities and high levels of congruence were present between the topologies resulting from the analysis of all Octopodiform (octopuses and vampire "squid") taxa for all six genes, and independently for the datasets of mitochondrial and nuclear genes. In contrast, the highest levels of resolution within the Decapodiformes (squids and cuttlefishes) resulted from analysis of nuclear genes alone. Different higher level Decapodiform topologies were obtained through the analysis of only the 1st+2nd codon positions of nuclear genes and of all three codon positions. It is notable that there is strong evidence of saturation among the 3rd codon positions within the Decapodiformes and this may contribute spurious signal. The results suggest that the Decapodiformes may have radiated earlier and/or had faster rates of evolution than the Octopodiformes. The following taxonomic conclusions are drawn from our analyses: (1) the order Octopoda and suborders Cirrata, Incirrata, and Oegopsida are monophyletic groups; (2) the family Spirulidae (Ram's horn squids) are the sister taxon to the family Sepiidae (cuttlefishes); (3) the family Octopodidae, as currently defined, is paraphyletic; (4) the superfamily Argonautoidea are basal within the suborder Incirrata; and (5) the benthic octopus genera Benthoctopus and Enteroctopus are sister taxa.  相似文献   

20.
The phylogenetic relationships within the fungus gnat tribe Exechiini have been left unattended for many years. Recent studies have not shed much light on the intergeneric relationship within the tribe. Here the first attempt to resolve the phylogeny of the tribe Exechiini using molecular markers is presented. The nuclear 18S and the mitochondrial 16S, and cytochrome oxidase subunit I (COI) genes were successfully sequenced for 20 species representing 15 Exechiini genera and five outgroup genera. Bayesian, maximum parsimony and maximum likelihood analyses revealed basically congruent tree topologies and the monophyly of Exechiini, including the genus Cordyla , is confirmed. The molecular data corroborate previous morphological studies in several aspects. Cordyla is found in a basal clade together with Brachypeza , Pseudorymosia and Stigmatomeria . The splitting of the genera Allodiopsis s.l. and Brevicornu s.l. as well as the sistergroup relationship of Exechia and Exechiopsis is also supported. The limited phylogenetic information provided by morphological characters is mirrored in the limited resolution of the molecular markers used in this study. Short internal and long-terminal branches obtained may indicate a rapid radiation of the Exechiini genera during a short evolutionary period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号