首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yi Y  Mirosevich J  Shyr Y  Matusik R  George AL 《Genomics》2005,85(3):401-412
Microarray technology can be used to assess simultaneously global changes in expression of mRNA or genomic DNA copy number among thousands of genes in different biological states. In many cases, it is desirable to determine if altered patterns of gene expression correlate with chromosomal abnormalities or assess expression of genes that are contiguous in the genome. We describe a method, differential gene locus mapping (DIGMAP), which aligns the known chromosomal location of a gene to its expression value deduced by microarray analysis. The method partitions microarray data into subsets by chromosomal location for each gene interrogated by an array. Microarray data in an individual subset can then be clustered by physical location of genes at a subchromosomal level based upon ordered alignment in genome sequence. A graphical display is generated by representing each genomic locus with a colored cell that quantitatively reflects its differential expression value. The clustered patterns can be viewed and compared based on their expression signatures as defined by differential values between control and experimental samples. In this study, DIGMAP was tested using previously published studies of breast cancer analyzed by comparative genomic hybridization (CGH) and prostate cancer gene expression profiles assessed by cDNA microarray experiments. Analysis of the breast cancer CGH data demonstrated the ability of DIGMAP to deduce gene amplifications and deletions. Application of the DIGMAP method to the prostate data revealed several carcinoma-related loci, including one at 16q13 with marked differential expression encompassing 19 known genes including 9 encoding metallothionein proteins. We conclude that DIGMAP is a powerful computational tool enabling the coupled analysis of microarray data with genome location.  相似文献   

2.
Multiple regions of the genome are often amplified during breast cancer development and progression, as evidenced in a number of published studies by comparative genomic hybridization (CGH). However, only relatively few target genes for such amplifications have been identified. Here, we indicate how small-scale commercially available cDNA and CGH microarray formats combined with the tissue microarray technology enable rapid identification of putative amplification target genes as well as analysis of their clinical significance. According to CGH, the SUM-52 breast cancer cell line harbors several high-level DNA amplification sites, including the 10q26 chromosomal region where the fibroblast growth factor receptor 2 (FGFR2) gene has been localized. High level amplification of FGFR2 in SUM-52 was identified using CGH analysis on a microarray of BAC clones. A cDNA microarray survey of 588 genes showed >40-fold overexpression of FGFR2. Finally, a tissue microarray based FISH analysis of 750 uncultured primary breast cancers demonstrated in vivo amplification of the FGFR2 gene in about 1% of the tumors. In conclusion, three consecutive microarray (CGH, cDNA and tissue) experiments revealed high-level amplification and overexpression of the FGFR2 in a breast cancer cell line, but only a low frequency of involvement in primary breast tumors. Applied to a genomic scale with larger arrays, this strategy should facilitate identification of the most important target genes for cytogenetic rearrangements, such as DNA amplification sites detected by conventional CGH. Figures on http://www.esacp.org/acp/2001/22-4/heiskanen.htm  相似文献   

3.
DNA microarray gene expression and microarray-based comparative genomic hybridization (aCGH) have been widely used for biomedical discovery. Because of the large number of genes and the complex nature of biological networks, various analysis methods have been proposed. One such method is "gene shaving," a procedure which identifies subsets of the genes with coherent expression patterns and large variation across samples. Since combining genomic information from multiple sources can improve classification and prediction of diseases, in this paper we proposed a new method, "ICA gene shaving" (ICA, independent component analysis), for jointly analyzing gene expression and copy number data. First we used ICA to analyze joint measurements, gene expression and copy number, of a biological system and project the data onto statistically independent biological processes. Next, we used these results to identify patterns of variation in the data and then applied an iterative shaving method. We investigated the properties of our proposed method by analyzing both simulated and real data. We demonstrated that the robustness of our method to noise using simulated data. Using breast cancer data, we showed that our method is superior to the Generalized Singular Value Decomposition (GSVD) gene shaving method for identifying genes associated with breast cancer.  相似文献   

4.
Cancer progression is due to the accumulation of recurrent genomic alterations that induce growth advantage and clonal expansion. Most of these genomic changes can be detected using the array comparative genomic hybridization (CGH) technique. The accurate classification of these genomic alterations is expected to have an important impact on translational and basic research. Here we review recent advances in CGH technology used in the characterization of different features of breast cancer. First, we present bioinformatics methods that have been developed for the analysis of CGH arrays; next, we discuss the use of array CGH technology to classify tumor stages and to identify and stratify subgroups of patients with different prognoses and clinical behaviors. We finish our review with a discussion of how CGH arrays are being used to identify oncogenes, tumor suppressor genes, and breast cancer susceptibility genes.  相似文献   

5.

Background

Molecular alterations critical to development of cancer include mutations, copy number alterations (amplifications and deletions) as well as genomic rearrangements resulting in gene fusions. Massively parallel next generation sequencing, which enables the discovery of such changes, uses considerable quantities of genomic DNA (> 5 ug), a serious limitation in ever smaller clinical samples. However, a commonly available microarray platforms such as array comparative genomic hybridization (array CGH) allows the characterization of gene copy number at a single gene resolution using much smaller amounts of genomic DNA. In this study we evaluate the sensitivity of ultra-dense array CGH platforms developed by Agilent, especially that of the 1 million probe array (1 M array), and their application when whole genome amplification is required because of limited sample quantities.

Methods

We performed array CGH on whole genome amplified and not amplified genomic DNA from MCF-7 breast cancer cells, using 244 K and 1 M Agilent arrays. The ADM-2 algorithm was used to identify micro-copy number alterations that measured less than 1 Mb in genomic length.

Results

DNA from MCF-7 breast cancer cells was analyzed for micro-copy number alterations, defined as measuring less than 1 Mb in genomic length. The 4-fold extra resolution of the 1 M array platform relative to the less dense 244 K array platform, led to the improved detection of copy number variations (CNVs) and micro-CNAs. The identification of intra-genic breakpoints in areas of DNA copy number gain signaled the possible presence of gene fusion events. However, the ultra-dense platforms, especially the densest 1 M array, detect artifacts inherent to whole genome amplification and should be used only with non-amplified DNA samples.

Conclusions

This is a first report using 1 M array CGH for the discovery of cancer genes and biomarkers. We show the remarkable capacity of this technology to discover CNVs, micro-copy number alterations and even gene fusions. However, these platforms require excellent genomic DNA quality and do not tolerate relatively small imperfections related to the whole genome amplification.  相似文献   

6.
Array-based comparative genomics hybridization (aCGH) has gained prevalence as an effective technique for measuring structural variations in the genome. Copy-number variations (CNVs) form a large source of genomic structural variation, but it is not known whether phenotypic differences between intra-species groups, such as divergent human populations, or breeds of a domestic animal, can be attributed to CNVs. Several computational methods have been proposed to improve the detection of CNVs from array CGH data, but few population studies have used CGH data for identification of intra-species differences. In this paper we propose a novel method of genome-wide comparison and classification using CGH data that condenses whole genome information, aimed at quantification of intra-species variations and discovery of shared ancestry. Our strategy included smoothing CGH data using an appropriate denoising algorithm, extracting features via wavelets, quantifying the information via wavelet power spectrum and hierarchical clustering of the resultant profile. To evaluate the classification efficiency of our method, we used simulated data sets. We applied it to aCGH data from human and bovine individuals and showed that it successfully detects existing intra-specific variations with additional evolutionary implications.  相似文献   

7.
MOTIVATION: Array Comparative Genomic Hybridization (CGH) can reveal chromosomal aberrations in the genomic DNA. These amplifications and deletions at the DNA level are important in the pathogenesis of cancer and other diseases. While a large number of approaches have been proposed for analyzing the large array CGH datasets, the relative merits of these methods in practice are not clear. RESULTS: We compare 11 different algorithms for analyzing array CGH data. These include both segment detection methods and smoothing methods, based on diverse techniques such as mixture models, Hidden Markov Models, maximum likelihood, regression, wavelets and genetic algorithms. We compute the Receiver Operating Characteristic (ROC) curves using simulated data to quantify sensitivity and specificity for various levels of signal-to-noise ratio and different sizes of abnormalities. We also characterize their performance on chromosomal regions of interest in a real dataset obtained from patients with Glioblastoma Multiforme. While comparisons of this type are difficult due to possibly sub-optimal choice of parameters in the methods, they nevertheless reveal general characteristics that are helpful to the biological investigator.  相似文献   

8.
MOTIVATION: The DNA microarray technology has been increasingly used in cancer research. In the literature, discovery of putative classes and classification to known classes based on gene expression data have been largely treated as separate problems. This paper offers a unified approach to class discovery and classification, which we believe is more appropriate, and has greater applicability, in practical situations. RESULTS: We model the gene expression profile of a tumor sample as from a finite mixture distribution, with each component characterizing the gene expression levels in a class. The proposed method was applied to a leukemia dataset, and good results are obtained. With appropriate choices of genes and preprocessing method, the number of leukemia types and subtypes is correctly inferred, and all the tumor samples are correctly classified into their respective type/subtype. Further evaluation of the method was carried out on other variants of the leukemia data and a colon dataset.  相似文献   

9.
Summary .  The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer. We develop nonparametric tests for the detection of copy number induced differential gene expression. The tests incorporate the uncertainty of the calling of genomic aberrations. The test is preceded by a "tuning algorithm" that discards certain genes to improve the overall power of the false discovery rate selection procedure. Moreover, the test statistics are "shrunken" to borrow information across neighboring genes that share the same array CGH signature. For each gene we also estimate its effect, its amount of differential expression due to copy number changes, and calculate the coefficient of determination. The method is illustrated on breast cancer data, in which it confirms previously reported findings, now with a more profound statistical underpinning.  相似文献   

10.
Tumor formation is in part driven by DNA copy number alterations (CNAs), which can be measured using microarray-based Comparative Genomic Hybridization (aCGH). Multiexperiment analysis of aCGH data from tumors allows discovery of recurrent CNAs that are potentially causal to cancer development. Until now, multiexperiment aCGH data analysis has been dependent on discretization of measurement data to a gain, loss or no-change state. Valuable biological information is lost when a heterogeneous system such as a solid tumor is reduced to these states. We have developed a new approach which inputs nondiscretized aCGH data to identify regions that are significantly aberrant across an entire tumor set. Our method is based on kernel regression and accounts for the strength of a probe's signal, its local genomic environment and the signal distribution across multiple tumors. In an analysis of 89 human breast tumors, our method showed enrichment for known cancer genes in the detected regions and identified aberrations that are strongly associated with breast cancer subtypes and clinical parameters. Furthermore, we identified 18 recurrent aberrant regions in a new dataset of 19 p53-deficient mouse mammary tumors. These regions, combined with gene expression microarray data, point to known cancer genes and novel candidate cancer genes.  相似文献   

11.
Recent technology has made it possible to simultaneously perform multi-platform genomic profiling (e.g. DNA methylation (DM) and gene expression (GE)) of biological samples, resulting in so-called ‘multi-dimensional genomic data’. Such data provide unique opportunities to study the coordination between regulatory mechanisms on multiple levels. However, integrative analysis of multi-dimensional genomics data for the discovery of combinatorial patterns is currently lacking. Here, we adopt a joint matrix factorization technique to address this challenge. This method projects multiple types of genomic data onto a common coordinate system, in which heterogeneous variables weighted highly in the same projected direction form a multi-dimensional module (md-module). Genomic variables in such modules are characterized by significant correlations and likely functional associations. We applied this method to the DM, GE, and microRNA expression data of 385 ovarian cancer samples from the The Cancer Genome Atlas project. These md-modules revealed perturbed pathways that would have been overlooked with only a single type of data, uncovered associations between different layers of cellular activities and allowed the identification of clinically distinct patient subgroups. Our study provides an useful protocol for uncovering hidden patterns and their biological implications in multi-dimensional ‘omic’ data.  相似文献   

12.
Jia P  Zhao Z 《PloS one》2012,7(5):e37595
BACKGROUND: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data. METHODOLOGY: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The empirical P value obtained then provides an adjusted statistical evaluation. PRINCIPAL FINDINGS/CONCLUSIONS: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the weighted resampling method performs as well as the standard methods for significant pathways with strong evidence. Importantly, our method could effectively reject many marginally significant pathways detected by standard methods, including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases, pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and methylation) that have similar bias problems.  相似文献   

13.
A method for calling gains and losses in array CGH data   总被引:11,自引:0,他引:11  
Array CGH is a powerful technique for genomic studies of cancer. It enables one to carry out genome-wide screening for regions of genetic alterations, such as chromosome gains and losses, or localized amplifications and deletions. In this paper, we propose a new algorithm 'Cluster along chromosomes' (CLAC) for the analysis of array CGH data. CLAC builds hierarchical clustering-style trees along each chromosome arm (or chromosome), and then selects the 'interesting' clusters by controlling the False Discovery Rate (FDR) at a certain level. In addition, it provides a consensus summary across a set of arrays, as well as an estimate of the corresponding FDR. We illustrate the method using an application of CLAC on a lung cancer microarray CGH data set as well as a BAC array CGH data set of aneuploid cell strains.  相似文献   

14.
Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays provides an opportunity to catalog highly accurate genomic variants of the reference DNA (NA10851). Using information on variants, we developed a new method, the CGH array reference-free algorithm (CARA), which can determine reference-unbiased absolute CNVs from any CGH array platform. The algorithm enables the removal and rescue of false positive and false negative CNVs, respectively, which appear due to the effects of genomic variants of the reference sample in raw CGH array experiments. We found that the CARA remarkably enhanced the accuracy of CGH array in determining absolute CNVs. Our method thus provides a new approach to interpret CGH array data for personalized medicine.  相似文献   

15.
Comparative genomic hybridizations (CGH) using microarrays are performed with bacteria in order to determine the level of genomic similarity between various strains. The microarrays applied in CGH experiments are constructed on the basis of the genome sequence of one strain, which is used as a control, or reference, in each experiment. A strain being compared with the known strain is called the unknown strain. The ratios of fluorescent intensities obtained from the spots on the microarrays can be used to determine which genes are divergent in the unknown strain, as well as to predict the copy number of actual genes in the unknown strain. In this paper, we focus on the prediction of gene copy number based on data from CGH experiments. We assumed a linear connection between the log2 of the copy number and the observed log2-ratios, then predictors based on the factor analysis model and the linear random model were proposed in an attempt to identify the copy numbers. These predictors were compared to using the ratio of the intensities directly. Simulations indicated that the proposed predictors improved the prediction of the copy number in most situations. The predictors were applied on CGH data obtained from experiments with Enterococcus faecalis strains in order to determine copy number of relevant genes in five different strains.  相似文献   

16.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

17.
CGH-Plotter: MATLAB toolbox for CGH-data analysis   总被引:1,自引:0,他引:1  
CGH-Plotter is a MATLAB toolbox with a graphical user interface for the analysis of comparative genomic hybridization (CGH) microarray data. CGH-Plotter provides a tool for rapid visualization of CGH-data according to the locations of the genes along the genome. In addition, the CGH-Plotter identifies regions of amplifications and deletions, using k-means clustering and dynamic programming. The application offers a convenient way to analyze CGH-data and can also be applied for the analysis of cDNA microarray expression data. CGH-Plotter toolbox is platform independent and requires MATLAB 6.1 or higher to operate.  相似文献   

18.
MOTIVATION: The development of methods for linking gene expressions to various clinical and phenotypic characteristics is an active area of genomic research. Scientists hope that such analysis may, for example, describe relationships between gene function and clinical events such as death or recovery. Methods are available for relating gene expression to measurements that are categorized or continuous, but there is less work in relating expressions to an observed event time such as time to death, response or relapse. When gene expressions are measured over time, there are methods for differentiating temporal patterns. However, methods have not yet been proposed for the survival analysis of longitudinally collected microarrays. RESULTS: We describe an approach for the survival analysis of longitudinal gene expression data. We construct a measure of association between the time to an event and gene expressions collected over time. Statistical significance is addressed using permutations and control of the false discovery rate. Our proposed method is illustrated on a dataset from a multi-center research study of inflammation and response to injury that aims to uncover the biological reasons why patients can have dramatically different outcomes after suffering a traumatic injury (www.gluegrant.org).  相似文献   

19.
Emerging integrative analysis of genomic and anatomical imaging data which has not been well developed, provides invaluable information for the holistic discovery of the genomic structure of disease and has the potential to open a new avenue for discovering novel disease susceptibility genes which cannot be identified if they are analyzed separately. A key issue to the success of imaging and genomic data analysis is how to reduce their dimensions. Most previous methods for imaging information extraction and RNA-seq data reduction do not explore imaging spatial information and often ignore gene expression variation at the genomic positional level. To overcome these limitations, we extend functional principle component analysis from one dimension to two dimensions (2DFPCA) for representing imaging data and develop a multiple functional linear model (MFLM) in which functional principal scores of images are taken as multiple quantitative traits and RNA-seq profile across a gene is taken as a function predictor for assessing the association of gene expression with images. The developed method has been applied to image and RNA-seq data of ovarian cancer and kidney renal clear cell carcinoma (KIRC) studies. We identified 24 and 84 genes whose expressions were associated with imaging variations in ovarian cancer and KIRC studies, respectively. Our results showed that many significantly associated genes with images were not differentially expressed, but revealed their morphological and metabolic functions. The results also demonstrated that the peaks of the estimated regression coefficient function in the MFLM often allowed the discovery of splicing sites and multiple isoforms of gene expressions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号