首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development.

Methodology/Principal Findings

In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy.

Conclusions/Significance

Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease.  相似文献   

2.

Background

Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies.

Methodology/Principal Findings

Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose–dependent manner.

Conclusions/Significance

Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.  相似文献   

3.

Background

In chronic liver disease, hepatic stellate cells (HSC) transdifferentiate into myofibroblasts, promoting extracellular matrix (ECM) synthesis and deposition. Stimulation of HSC by transforming growth factor-β (TGF-β) is a crucial event in liver fibrogenesis due to its impact on myofibroblastic transition and ECM induction. In contrast, hepatocyte growth factor (HGF), exerts antifibrotic activities. Recently, miR-29 has been reported to be involved in ECM synthesis. We therefore studied the influence of HGF and TGF-β on the miR-29 collagen axis in HSC.

Methodology

HSC, isolated from rats, were characterized for HGF and Met receptor expression by Real-Time PCR and Western blotting during culture induced myofibroblastic transition. Then, the levels of TGF-β, HGF, collagen-I and -IV mRNA, in addition to miR-29a and miR-29b were determined after HGF and TGF-β stimulation of HSC or after experimental fibrosis induced by bile-duct obstruction in rats. The interaction of miR-29 with 3′-untranslated mRNA regions (UTR) was analyzed by reporter assays. The repressive effect of miR-29 on collagen synthesis was studied in HSC treated with miR-29-mimicks by Real-Time PCR and immunoblotting.

Principal Findings

The 3′-UTR of the collagen-1 and −4 subtypes were identified to bind miR-29. Hence, miR-29a/b overexpression in HSC resulted in a marked reduction of collagen-I and -IV synthesis. Conversely, a decrease in miR-29 levels is observed during collagen accumulation upon experimental fibrosis, in vivo, and after TGF-β stimulation of HSC, in vitro. Finally, we show that during myofibroblastic transition and TGF-β exposure the HGF-receptor, Met, is upregulated in HSC. Thus, whereas TGF-β stimulation leads to a reduction in miR-29 expression and de-repression of collagen synthesis, stimulation with HGF was definitely associated with highly elevated miR-29 levels and markedly repressed collagen-I and -IV synthesis.

Conclusions

Upregulation of miRNA-29 by HGF and downregulation by TGF-β take part in the anti- or profibrogenic response of HSC, respectively.  相似文献   

4.
5.

Background

Akt is a critical mediator of developmental skeletal muscle growth. Treatment with a soluble ActRIIB fusion protein (ActRIIB-mFc) increases skeletal muscle mass and strength by inhibiting myostatin and related peptides. Recent in vitro studies have suggested that Akt signaling is necessary for the ability of ActRIIB inhibition to induce muscle hypertrophy. Thus, we hypothesized that mice deficient in either Akt1 or Akt2 would not respond to in vivo inhibition of ActRIIB with ActRIIB-mFc treatment.

Methodology and Principal Findings

We analyzed body composition and muscle parameters in wild-type C57BL/6J and Akt1 and Akt2 knockout mice, and compared the responses to blockade of ActRIIB signaling via ActRIIB-mFc treatment. Mice lacking Akt1 or Akt2 had reduced muscle mass, grip strength and contractile force. However, deficiency of Akt1 or Akt2 did not prevent the ability of ActRIIB-mFc treatment to induce muscle hypertrophy, or increase grip strength and contractile force. Akt1 and Akt2 deficient mice responded similarly as wild type mice to ActRIIB-mFc treatment by increasing fiber size.

Conclusions and Significance

Akt1 and Akt2 are important for the regulation of skeletal muscle mass and function. However, these Akt isoforms are not essential for the ability of ActRIIB inhibition to regulate muscle size, fiber type, strength or contractile force.  相似文献   

6.

Background

Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity.

Methodology/Principal Findings

Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs.

Conclusions

The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy.  相似文献   

7.
8.
9.

Background

The question of whether intact somatic cells committed to a specific differentiation fate, can be reprogrammed in vivo by exposing them to a different host microenvironment is a matter of controversy. Many reports on transdifferentiation could be explained by fusion with host cells or reflect intrinsic heterogeneity of the donor cell population.

Methodology/Principal Findings

We have tested the capacity of cloned populations of mouse and human muscle progenitor cells, committed to the myogenic pathway, to transdifferentiate to neurons, following their inoculation into the developing brain of newborn mice. Both cell types migrated into various brain regions, and a fraction of them gained a neuronal morphology and expressed neuronal or glial markers. Likewise, inoculated cloned human myogenic cells expressed a human specific neurofilament protein. Brain injected donor cells that expressed a YFP transgene controlled by a neuronal specific promoter, were isolated by FACS. The isolated cells had a wild-type diploid DNA content.

Conclusions

These and other results indicate a genuine transdifferentiation phenomenon induced by the host brain microenvironment and not by fusion with host cells. The results may potentially be relevant to the prospect of autologous cell therapy approach for CNS diseases.  相似文献   

10.
Meng J  Adkin CF  Xu SW  Muntoni F  Morgan JE 《PloS one》2011,6(3):e17454

Background

Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient''s skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings.

Methodology/Principal Findings

Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts.

Conclusions/Significance

Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials.  相似文献   

11.
12.
13.

[Purpose]

The purpose of this study was to investigate the effect of Sirtuin 1 (SIRT1) and General control nonderepressible 5 (GCN5) knock down on peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-1α) deacetylation during electrical stimulated skeletal muscle contraction.

[Methods]

Skeletal muscle primary cell were isolated from C57BL/6 mice gastrocnemius and transfected lentiviral SIRT1 and GCN5 shRNA. Knock downed muscle cell were stimulated by electrical stimulation (1Hz, 3min) and collected for PGC-1α deceatylation assays. Immunoprecipitation performed for PGC-1α deacetylation, acetyl-lysine level was measured.

[Results]

Our resulted showed SIRT1 knock down not influenced to PGC-1α deacetylation during electrical stimulation induced muscle contraction while GCN5 knock down decreased PGC-1α deacetylation significantly (p<0.05).

[Conclusion]

This study can be concluded that GCN5 is a critical factor for muscle contraction induced PGC-1α deacetylation.  相似文献   

14.
Deng W  Wang X  Xiao J  Chen K  Zhou H  Shen D  Li H  Tang Q 《PloS one》2012,7(1):e30256

Background

The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF).

Methodology/Principal Findings

Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation.

Conclusions/Significance

Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.  相似文献   

15.

Background

Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS.

Methodology/Principal Findings

We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model.

Conclusions/Significance

These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases.  相似文献   

16.

Introduction

Hepatocyte growth factor (HGF) is a potent proangiogenic molecule that induces neovascularization. The HGF antagonist, NK4, competitively antagonizes HGF binding to its receptor. In the present study, we determined the inhibitory effect of NK4 in a rheumatoid arthritis (RA) model using SKG mice.

Methods

Arthritis was induced in SKG mice by a single intraperitoneal injection of β-glucan. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was also injected intravenously at the time of or 1 month after β-glucan injection. Ankle bone destruction was examined radiographically. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Enzyme-linked immunosorbent assays were used to determine the serum levels of HGF, interferon γ (IFN-γ, interleukin 4 (IL-4) and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Results

The intravenous injection of AdCMV.NK4 into SKG mice suppressed the progression of β-glucan-induced arthritis. Bone destruction was also inhibited by NK4 treatment. The histopathologic findings of the ankles revealed that angiogenesis, inflammatory cytokines and RANKL expression in synovial tissues were significantly inhibited by NK4 treatment. Recombinant NK4 (rNK4) proteins inhibited IFN-γ, IL-4 and IL-17 production by CD4+ T cells stimulated with allogeneic spleen cells.

Conclusions

These results indicate that NK4 inhibits arthritis by inhibition of angiogenesis and inflammatory cytokine production by CD4+ T cells. Therefore, molecular targeting of angiogenic inducers by NK4 can potentially be used as a novel therapeutic approach for the treatment of RA.  相似文献   

17.

Background and purpose

TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known.

Experimental approach

Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry.

Key results

Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle.

Conclusion and implications

Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.  相似文献   

18.

Background

Although muscular dystrophy causes muscle weakness and muscle loss, the role of exercise in the management of this disease remains controversial.

Objective

The purpose of this systematic review is to evaluate the role of exercise interventions on muscle strength in patients with muscular dystrophy.

Methods

We performed systematic electronic searches in Medline, Embase, Web of Science, Scopus and Pedro as well as a list of reference literature. We included trials assessing muscle exercise in patients with muscular dystrophy. Two reviewers independently abstracted data and appraised risk of bias.

Results

We identified five small (two controlled and three randomized clinical) trials comprising 242 patients and two ongoing randomized controlled trials. We were able to perform two meta-analyses. We found an absence of evidence for a difference in muscle strength (MD 4.18, 95% CIs - 2.03 to 10.39; p = 0.91) and in endurance (MD −0.53, 95% CIs –1.11 to 0.05; p = 0.26). In both, the direction of effects favored muscle exercise.

Conclusions

The first included trial about the efficacy of muscular exercise was published in 1978. Even though some benefits of muscle exercise were consistently reported across studies, the benefits might be due to the small size of studies and other biases. Detrimental effects are still possible. After several decades of research, doctors cannot give advice and patients are, thus, denied basic information. A multi-center randomized trial investigating the strength of muscles, fatigue, and functional limitations is needed.  相似文献   

19.

Background

Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown.

Methodology/Principal Findings

Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis.

Conclusions/Significance

We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin.  相似文献   

20.

Background

The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.

Methodology/Principal Findings

We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.

Conclusions/Significance

These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号