首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Irbäck A  Mitternacht S 《Proteins》2008,71(1):207-214
Using all-atom Monte Carlo simulations with implicit water, combined with a cluster size analysis, we study the aggregation of Abeta(16) (-22), a peptide capable of forming amyloid fibrils. We consider a system of six initially randomly oriented Abeta(16) (-22) peptides, and investigate the thermodynamics and structural properties of aggregates formed by this system. The system is unaggregated without ordered secondary structure at high temperature, and forms beta-sheet rich aggregates at low temperature. At the crossover between these two regimes, we find that clusters of all sizes occur, whereas the beta-strand content is low. In one of several runs, we observe the spontaneous formation of a beta-barrel with six antiparallel strands. The beta-barrel stands out as the by far most long-lived aggregate seen in our simulations.  相似文献   

2.
Alzheimer's, Parkinson's, and Creutzfeldt-Jakob's neurodegenerative diseases are all linked with the assembly of normally soluble proteins into amyloid fibrils. Because of experimental limitations, structural characterization of the soluble oligomers, which form early in the process of fibrillogenesis and are cytotoxic, remains to be determined. In this article, we study the aggregation paths of seven chains of the shortest amyloid-forming peptide, using an activitated method and a reduced atomic representation. Our simulations show that disordered KFFE monomers ultimately form three distinct topologies of similar energy: amorphous oligomers, incomplete rings with beta-barrel character, and cross-beta-sheet structures with the meridional but not the equatorial X-ray fiber reflections. The simulations also shed light on the pathways from misfolded aggregates to fibrillar-like structures. They also underline the multiplicity of building blocks that can lead to the formation of the critical nucleus from which rapid growth of the fibril occurs.  相似文献   

3.
We present a detailed analysis of the structural properties of one monomer of Abeta(11-25) as well as of the aggregation mechanisms for four chains of Abeta(11-25) using the activation-relaxation technique coupled with a generic energy potential. Starting from a random distribution of these four chains, we find that the system assembles rapidly into a random globular state that evolves into three- and four-stranded antiparallel beta-sheets. The aggregation process is considerably accelerated by the presence of preformed dimers. We also find that the reptation mechanism already identified in shorter peptides plays a significant role here in allowing the structure to reorganize without having to fully dissociate.  相似文献   

4.
Increasing knowledge on the understanding interactions of aptamer with misfolded proteins (including monomer, oligomer, and amyloid fibril) is crucial for development of aggregation inhibitors and diagnosis of amyloid diseases. Herein, the interactions of lysozyme monomer–, oligomer‐, and amyloid fibril–aptamer were investigated using single‐molecule force spectroscopy. The results revealed that the aptamer screened against lysozyme monomer could also bind to oligomer and amyloid fibril, in spite of the recognition at a lower binding probability. It may be attributed to the inherent structural differences of misfolded proteins and the flexible conformation of aptamer. In addition, dynamic force spectra showed that there were similar dissociation paths in the dissociation process of lysozyme monomer–, oligomer‐, and amyloid fibril–aptamer complexes. It showed that the dissociation only passed 1 energy barrier from the binding state to the detachment. However, the dynamic parameters suggested that the oligomer‐ and amyloid fibril–aptamer were more stable than lysozyme monomer–aptamer. The phenomena may result from the exposure of aptamer‐recognized sequences on the surface and the electrostatic interactions. This work demonstrated that single‐molecule force spectroscopy could be a powerful tool to study the binding behavior of the aptamer with misfolded proteins at single‐molecule level, providing abundant information for researches and comprehensive applications of aptamer probes in diagnosis of amyloid diseases.  相似文献   

5.
Best RB  Mittal J 《Proteins》2011,79(4):1318-1328
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two‐state folder, the GB1 hairpin. We use extensive replica‐exchange molecular dynamics simulations to characterize the free‐energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Amyloid fibrils are highly ordered protein aggregates associated with many diseases affecting millions of people worldwide. Polyphenols such as Curcumin, Exifone, and Myricetin exhibit modest inhibition toward fibril formation of tau peptide which is associated with Alzheimer’s disease. However, the molecular mechanisms of this inhibition remain elusive. We investigated the binding of three polyphenol molecules to the protofibrils of an amyloidogenic fragment VQIVYK of tau peptide by molecular dynamics simulations in explicit solvent. We find that polyphenols induce conformational changes in the oligomer aggregate. These changes disrupt the amyloid H bonding, perturbing the aggregate. While the structural evolution of the control oligomer with no ligand is limited to the twisting of the β-sheets without their disassembly, the presence of polyphenol molecule pushes the β-sheets apart, and leads to a loosely packed structure where two of four β-sheets dissociate in each of the three cases considered here. The H-bonding capacity of polyphenols is responsible for the observed behavior. The calculated binding free energies and its individual components enabled better understanding of the binding. Results indicated that the contribution from Van der Waals interactions is more significant than electrostatic contribution to the binding. The findings from this study are expected to assist in the development of aggregation inhibitors. Significant binding between polyphenols and aggregate oligomer identified in our simulations confirms the previous experimental observations in which polyphenols refold the tau peptide without forming covalent bonds.  相似文献   

7.
Thioflavin T (ThT) is a fluorescent dye commonly used to stain amyloid plaques, but the binding sites of this dye onto fibrils are poorly characterized. We present molecular dynamics simulations of the binding of ThT and its neutral analog BTA-1 [2-(4'-methylaminophenyl)benzothiazole] to model protofibrils of the Alzheimer's disease Abeta(16-22) (amyloid beta) peptide. Our simulations reveal two binding modes located at the grooves of the beta-sheet surfaces and at the ends of the beta-sheet. These simulations provide new insight into recent experimental work and allow us to characterize the high-capacity, micromolar-affinity site seen in experiment as binding to the beta-sheet surface grooves and the low-capacity, nanomolar-affinity site seen as binding to the beta-sheet extremities of the fibril. The structure-activity relationship upon mutating charged ThT to neutral BTA-1 in terms of increased lipophilicity and binding affinity was studied, with calculated solvation free energies and binding energies found to be in qualitative agreement with the experimental measurements.  相似文献   

8.
Molecular dynamic simulations have been performed for wild-type Hydrogenobacter thermophilus cytochrome c(552), a b-type variant of the protein, and the apo state with the heme prosthetic group removed. In the b-type variant, Cys 10 and Cys 13 were mutated to alanine residues, and so the heme group was no longer covalently bound to the protein. Two 8-ns simulations have been performed for each system at 298 and 360 K. The simulations of the wild-type protein at 298 K show a very close agreement with experimental NMR data. A fluxional process involving the side chain of Met 59, which coordinates to the heme iron, is observed in accord with proposals from NMR studies. Overall, the structure and dynamical behavior of the protein during the simulations of the b-type variant is closely similar to that of the wild-type protein. However, side chains in the heme-binding site show larger fluctuations in the b-type variant simulation at 360 K. In addition, structural changes are seen for a number of residues close to the heme group, particularly Gly 22 and Ser 51. The simulations of the apo state show significant conformational changes for residues 50-59. These residues form a loop region, which packs over the heme group in the wild-type protein and hydrogen bonds to the heme propionate groups. In the absence of heme, in the apo state simulations, these residues form short but persistent regions of beta-sheet secondary structure. These could provide nucleation sites for the conversion to amyloid fibrils.  相似文献   

9.
The interaction between beta-catenin and Tcf family members is crucial for the Wnt signal transduction pathway, which is commonly mutated in cancer. This interaction extends over a very large surface area (4800 A(2)), and inhibiting such interactions using low molecular weight inhibitors is a challenge. However, protein surfaces frequently contain "hot spots," small patches that are the main mediators of binding affinity. By making tight interactions with a hot spot, a small molecule can compete with a protein. The Tcf3/Tcf4-binding surface on beta-catenin contains a well-defined hot spot around residues K435 and R469. A 17,700 compounds subset of the Pharmacia corporate collection was docked to this hot spot with the QXP program; 22 of the best scoring compounds were put into a biophysical (NMR and ITC) screening funnel, where specific binding to beta-catenin, competition with Tcf4 and finally binding constants were determined. This process led to the discovery of three druglike, low molecular weight Tcf4-competitive compounds with the tightest binder having a K(D) of 450 nM. Our approach can be used in several situations (e.g., when selecting compounds from external collections, when no biochemical functional assay is available, or when no HTS is envisioned), and it may be generally applicable to the identification of inhibitors of protein-protein interactions.  相似文献   

10.
Experimentally, the human calcitonin hormone (hCT) can form highly stable amyloid protofibrils. Further, a peptide consisting of hCT residues 15-19, DFNKF, was shown to create highly ordered fibrils, similar to those formed by the entire hormone sequence. However, there are limited experimental data regarding the detailed 3D arrangement of either of these fibrils. We have modeled the DFNKF protofibril, using molecular dynamics simulations. We tested the stabilities of single sheet and of various multi sheet models. Remarkably, our most ordered and stable model consists of a parallel-stranded, single beta-sheet with a relatively insignificant hydrophobic core. We investigate the chemical and physical interactions responsible for the high structural organization of this single beta-sheet amyloid fibril. We observe that the most important chemical interactions contributing to the stability of the DFNKF organization are electrostatic, specifically between the Lys and the C terminus, between the Asp and N terminus, and a hydrogen bond network between the Asn side-chains of adjacent strands. Additionally, we observe hydrophobic and aromatic pi stacking interactions. We further simulated truncated filaments, FNKF and DFNK. Our tetra-peptide mutant simulations assume models similar to the penta-peptide. Experimentally, the FNKF does not create fibrils while DFNK does, albeit short and less ordered than DFNKF. In the simulations, the FNKF system was less stable than the DFNK and DFNKF. DFNK also lost many of its original interactions becoming less organized, however, many contacts were maintained. Thus, our results emphasize the role played by specific amino acid interactions. To further study specific interactions, we have mutated the penta-peptide, simulating DANKF, DFNKA and EFNKF. Here we describe the model, its relationship to experiment and its implications to amyloid organization.  相似文献   

11.
12.
The cross‐reactivity of antibody to the swine‐origin pandemic influenza A (H1N1) 2009 virus induced by vaccination with a seasonal trivalent influenza vaccine was studied. Paired sera from a cohort of adult volunteers vaccinated with a trivalent seasonal influenza vaccine every year from 2006 to 2008 were collected each year and tested by hemagglutination inhibition (HI) for antibody against the pandemic influenza A (H1N1) 2009 virus. There was little increase in the geometric mean titer overall; a slight increase was detected in the sera obtained in the 2007–2008 season but not in the other two seasons. The proportion of individuals with HI antibody titers ≥ 1:40 did not change significantly from year to year. These results indicate that cross‐reactivity of the antibodies induced by a trivalent seasonal vaccine to the pandemic influenza A (H1N1) 2009 virus is marginal.  相似文献   

13.
Two β-secreatase (BACE1) inhibitors from natural products (cinnamic acid and flavone) were linked to furnish potent, cell permeable BACE1 inhibitors with noncompetitive mode of inhibition, with the assistance of saturated transfer difference (STD)-NMR technique. Some of these conjugates also exhibited selective BACE1 inhibition over other aspartyl proteases such as BACE-2 and renin, as well as poor cytotoxicity. Taken together, conjugates 4 represent a new series of BACE inhibitors warrants further investigation for their potential in Alzheimier’s disease therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号