首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-sample pooling and Illumina Genome Analyzer (GA) sequencing allows high throughput sequencing of multiple samples to determine population sequence variation. A preliminary experiment, using the RET proto-oncogene as a model, predicted ≤30 samples could be pooled to reliably detect singleton variants without requiring additional confirmation testing. This report used 30 and 50 sample pools to test the hypothesized pooling limit and also to test recent protocol improvements, Illumina GAIIx upgrades, and longer read chemistry. The SequalPrepTM method was used to normalize amplicons before pooling. For comparison, a single ‘control’ sample was run in a different flow cell lane. Data was evaluated by variant read percentages and the subtractive correction method which utilizes the control sample. In total, 59 variants were detected within the pooled samples, which included all 47 known true variants. The 15 known singleton variants due to Sanger sequencing had an average of 1.62±0.26% variant reads for the 30 pool (expected 1.67% for a singleton variant [unique variant within the pool]) and 1.01±0.19% for the 50 pool (expected 1%). The 76 base read lengths had higher error rates than shorter read lengths (33 and 50 base reads), which eliminated the distinction of true singleton variants from background error. This report demonstrated pooling limits from 30 up to 50 samples (depending on error rates and coverage), for reliable singleton variant detection. The presented pooling protocols and analysis methods can be used for variant discovery in other genes, facilitating molecular diagnostic test design and interpretation.  相似文献   

2.
Next Generation Sequencing (NGS) has revolutionized biomedical research in recent years. It is now commonly used to identify rare variants through resequencing individual genomes. Due to the cost of NGS, researchers have considered pooling samples as a cost-effective alternative to individual sequencing. In this article, we consider the estimation of allele frequencies of rare variants through the NGS technologies with pooled DNA samples with or without barcodes. We consider three methods for estimating allele frequencies from such data, including raw sequencing counts, inferred genotypes, and expected minor allele counts, and compare their performance. Our simulation results suggest that the estimator based on inferred genotypes overall performs better than or as well as the other two estimators. When the sequencing coverage is low, biases and MSEs can be sensitive to the choice of the prior probabilities of genotypes for the estimators based on inferred genotypes and expected minor allele counts so that more accurate specification of prior probabilities is critical to lower biases and MSEs. Our study shows that the optimal number of barcodes in a pool is relatively robust to the frequencies of rare variants at a specific coverage depth. We provide general guidelines on using DNA pooling with barcoding for the estimation of allele frequencies of rare variants.  相似文献   

3.
目的:改进现有的检测表皮生长因子受体(EGFR)基因突变的荧光PCR法并开发出新的试剂盒,将其与直接测序法和ARMS法进行对比,验证该试剂盒用于临床诊断的敏感性、特异性和准确性。方法:收集2013年6月至2015年8月手术确诊的141例非小细胞肺癌(NSCLC)的石蜡包埋组织标本。采用盲法分别使用直接测序法、ARMS法和新试剂盒检测EGFR突变,比较新试剂盒与其他两种检测方法的差异,结果不一致时采用三种方法分别重复检验一次。结果:三种方法检测成功率均为100%,新试剂盒与直接测序法测得结果完全一致的比率达75.9%(107/141),在直接测序法测得的96例突变阳性中,92例在新试剂盒检测中得到验证(95.8%)。而直接测序法显示突变阴性的45例中,新试剂盒检测发现了23例突变阳性,两种检测方法的结果存在统计学差异(x2=40.745,P0.05)。与直接测序法进行比较,新试剂盒检测EGFR突变的敏感性、特异性分别为95.8%、48.9%,阳性预测值、阴性预测值分别为80.0%、84.6%,检测准确度为80.9%。以ARMS检测法为金标准,新试剂盒测得结果完全一致的比率达84.4%(119/141),两者的一致性比较好(K=0.749,P0.05),敏感性、特异性分别为94.1%、86.4%。结论:改进后EGFR基因突变检测的试剂盒在技术上较好地控制了检测结果的假阳性和假阴性,该检测方法较直接测序法具有更好的敏感性和准确性,与现有的ARMS法一致性较高。  相似文献   

4.

Background

Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive.

Results

Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified.

Conclusions

Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1263-4) contains supplementary material, which is available to authorized users.  相似文献   

5.
利用混合样本池法对鸡显性白羽基因PMEL17突变位点的检测   总被引:1,自引:0,他引:1  
显性白羽基因座是影响鸡羽色形成的重要基因座位之一, 该基因座上的显性等位基因I 会抑制黑色素合成, 从而使携带该基因的个体全身羽毛呈现白色。目前已确认鸡显性白羽基因座编码PMEL17蛋白: 是一种黑素细胞特异性蛋白, 在黑素细胞的分化与成熟中起到重要作用, 并证明PMEL17基因的突变与显性白羽的形成有关。文章利用混合样本池建立了一种低成本、高效率, 并能在大规模群体中检测PMEL17基因突变的方法, 称为PCR产物混合样本池法。该方法的基本步骤如下: 首先, 提取个体基因组DNA, 并设计相关引物对每一个体单独进行PCR扩增; 其次, 将PCR产物等比例混合, 10个样品混在一个池中; 然后, 将PCR产物混合池样品于非变性聚丙烯酰胺凝胶上进行电泳; 最后, 待电泳结束后进行银染, 根据凝胶上所显条带判定是否存在突变体。此外, 文章还将这种方法与传统基因组DNA混合样本池法进行了比较试验, 并利用该方法对试验鸡群显性白羽基因PMEL17突变进行检测, 证实该方法具有较高准确度。  相似文献   

6.
Summary A theoretical and practical approach to economize the analysis of large DNA sample numbers for identifying heterozygosity of the F508 mutation causing cystic fibrosis is presented. Sample pooling can reduce the number of polymerase chain reaction (PCR) tests for this mutation by up to 77%. Based on a mathematical model, the optimal number (n) of samples to be united in one pool is 24 for a German population with a F508 heterozygosity incidence of about 1/35. We show that the PCR method is sufficient to detect one heterozygote for the F508 mutation in a pool of up to 49 non-delated DNA samples.  相似文献   

7.
Highly multiplex DNA sequencers have greatly expanded our ability to survey human genomes for previously unknown single nucleotide polymorphisms (SNPs). However, sequencing and mapping errors, though rare, contribute substantially to the number of false discoveries in current SNP callers. We demonstrate that we can significantly reduce the number of false positive SNP calls by pooling information across samples. Although many studies prepare and sequence multiple samples with the same protocol, most existing SNP callers ignore cross-sample information. In contrast, we propose an empirical Bayes method that uses cross-sample information to learn the error properties of the data. This error information lets us call SNPs with a lower false discovery rate than existing methods.  相似文献   

8.
To reduce the costs of using the ELITEST-MVV, we explored the possibilities of sample pooling. Straight forward pooling applying the manufacturer's test conditions resulted in a significant loss of sensitivity. This was solved by using lower pre-dilutions of the samples than prescribed. Although an increase of background signal was encountered, discrimination between positive and negative samples was even better at pre-dilutions up to 12.5× as compared to the standard pre-dilution of 100×. This implied that pooling of up to eight samples was feasible. Receiver operating characteristic (ROC) analysis was used to determine the optimal cut-off value for the testing of pooled serum samples.

A model for cost-benefit analysis of pooling was applied which combines the economics of the technical performance of the modified assay and other additional cost factors connected with pooling such as hands-on time for composing the pools, expected seroprevalence in the test population, sample tracing and testing the individual samples of positive pools.

We concluded that pooling of samples was only feasible for monitoring SRLV-free accredited flocks because of their very low prevalence of infection. A pool consisting of five samples turned out to be the economical optimum although technically pool sizes of 10 samples were permitted.  相似文献   


9.
We determined frequency/types of K-ras mutations in colorectal/lung cancer. ADx-K-ras kit (real-time/double-loop probe PCR) was used to detect somatic tumor gene mutations compared with Sanger DNA sequencing using 583 colorectal and 244 lung cancer paraffin-embedded clinical samples. Genomic DNA was used in both methods; mutation rates at codons 12/13 and frequency of each mutation were detected and compared. The data show that 91.4% colorectal and 59.0% lung carcinoma samples were detected conclusively by DNA sequencing, whereas 100% colorectal and lung samples were detected by ADx-K-ras kit. K-ras gene mutations were detected in 32.9–27.4% colorectal samples using kit and sequencing methods, respectively. Whereas 10.6–8.3% lung cancer samples were positively detected by kit and sequencing methods, respectively. Notably, 172/677 showed mutations and 467/677 showed wild type by both methods; 38 samples showed mutations with kit but wild type with sequencing. Mutations in colorectal samples were as follows: GGT → GAT/codon-12 (35.1%); GGC → GAC/codon-13 (26.6%); GGT → GTT/codon-12 (18.2%); and GGT → GCT/codon-12 (1.6%). Mutations in lung samples were as follows: GGT > GTT/codon-12 (40.9%) and GGT > GCT/codon-12 (4.5%). In conclusion, K-ras mutations involved 32.2% colorectal and 10.6% lung samples among this cohort. ADx-K-ras real-time PCR showed higher detection rates (P < 0.05). The kit method has good clinical applicability as it is simple, fast, less prone to contamination and hence can be used effectively and reliably for clinical screening of somatic tumor gene mutations.  相似文献   

10.
Ultra-deep targeted sequencing (UDT-Seq) can identify subclonal somatic mutations in tumor samples. Early assays' limited breadth and depth restrict their clinical utility. Here, we target 71 kb of mutational hotspots in 42 cancer genes. We present novel methods enhancing both laboratory workflow and mutation detection. We evaluate UDT-Seq true sensitivity and specificity (> 94% and > 99%, respectively) for low prevalence mutations in a mixing experiment and demonstrate its utility using six tumor samples. With an improved performance when run on the Illumina Miseq, the UDT-Seq assay is well suited for clinical applications to guide therapy and study clonal selection in heterogeneous samples.  相似文献   

11.
We used a colorimetric reverse dot blot hybridization (CRDH) assay to detect the presence of mutations in a specific region of the rpoB gene, associated with rifampin (RIF) resistance, in a panel of 156 DNAs extracted from 103 RIF-sensitive and 53 RIF-resistant cultures of Mycobacterium tuberculosis. When compared with the antimicrobial susceptibility test (AST), the sensitivity and specificity of the CRDH were 92.3% and 98.1%, respectively. When compared with sequencing, the sensitivity and specificity of the CRDH were 90.6% and 100%, respectively. To evaluate the performance of the assay directly in clinical specimens, 30 samples from tuberculosis patients were used. For these samples, the results of the CRDH were 100% consistent with the results of the AST and sequencing. These results indicate that the rate of concordance of the CRDH is high when compared to conventional methods and sequencing data. The CRDH can be successfully applied when a rapid test is required for the identification of RIF resistance in M. tuberculosis.  相似文献   

12.
在荧光定量PCR基础上建立一种简单有效并且高度灵敏的TB-ARMSkras基因突变检测方法,并对其检测性能进行评估,探讨其临床应用价值。针对kras基因8种常见的点突变类型,通过设计并优化突变特异性引物、野生型特异性封闭引物并综合应用突变富集扩增反应条件等多种手段,提高点突变检测的灵敏度和特异性,采用已知野生型基因组样品和构建的突变质粒作为标准品,进行方法学评价;通过对临床样本的检测及与现有商品化试剂盒的比较进行性能验证;通过对术前血浆和配对组织样品的对比检测,评估方法是否适用于血液样本的检测。建立了TB-ARMS kras突变检测的新方法,能检测的最低突变率可达到0.01%。通过综合采用野生型特异性封闭引物和突变富集扩增条件等方法证明了其0.01%的突变检测灵敏度。检测准确性优于现有商品化试剂盒,血浆DNA TB-ARMS qPCR检测结果与配对组织DNA测序结果相符合。因此,TB-ARMS kras基因突变检测方法具有广泛的临床应用价值,既适用于临床组织样品的检测,也可应用于液体活检。  相似文献   

13.
There has been a dramatic increase of throughput of sequenced bases in the last years but sequencing a multitude of samples in parallel has not yet developed equally. Here we present a novel strategy where the combination of two tags is used to link sequencing reads back to their origins from a pool of samples. By incorporating the tags in two steps sample-handling complexity is lowered by nearly 100 times compared to conventional indexing protocols. In addition, the method described here enables accurate identification and typing of thousands of samples in parallel. In this study the system was designed to test 4992 samples using only 122 tags. To prove the concept of the two-tagging method, the highly polymorphic 2(nd) exon of DLA-DRB1 in dogs and wolves was sequenced using the 454 GS FLX Titanium Chemistry. By requiring a minimum sequence depth of 20 reads per sample, 94% of the successfully amplified samples were genotyped. In addition, the method allowed digital detection of chimeric fragments. These results demonstrate that it is possible to sequence thousands of samples in parallel without complex pooling patterns or primer combinations. Furthermore, the method is highly scalable as only a limited number of additional tags leads to substantial increase of the sample size.  相似文献   

14.
The complex molecular networks in the cell can give rise to surprising interactions: gene deletions that are synthetically lethal, gene overexpressions that promote stemness or differentiation, synergistic drug interactions that heighten potency. Yet, the number of actual interactions is dwarfed by the number of potential interactions, and discovering them remains a major problem. Pooled screening, in which multiple factors are simultaneously tested for possible interactions, has the potential to increase the efficiency of searching for interactions among a large set of factors. However, pooling also carries with it the risk of masking genuine interactions due to antagonistic influence from other factors in the pool. Here, we explore several theoretical models of pooled screening, allowing for synergy and antagonism between factors, noisy measurements, and other forms of uncertainty. We investigate randomized sequential designs, deriving formulae for the expected number of tests that need to be performed to discover a synergistic interaction, and the optimal size of pools to test. We find that even in the presence of significant antagonistic interactions and testing noise, randomized pooled designs can significantly outperform exhaustive testing of all possible combinations. We also find that testing noise does not affect optimal pool size, and that mitigating noise by a selective approach to retesting outperforms naive replication of all tests. Finally, we show that a Bayesian approach can be used to handle uncertainty in problem parameters, such as the extent of synergistic and antagonistic interactions, resulting in schedules for adapting pool size during the course of testing.  相似文献   

15.
The identification of mutations in targeted genes has been significantly simplified by the advent of TILLING (Targeting Induced Local Lesions In Genomes), speeding up the functional genomic analysis of animals and plants. Next‐generation sequencing (NGS) is gradually replacing classical TILLING for mutation detection, as it allows the analysis of a large number of amplicons in short durations. The NGS approach was used to identify mutations in a population of Solanum lycopersicum (tomato) that was doubly mutagenized by ethylmethane sulphonate (EMS). Twenty‐five genes belonging to carotenoids and folate metabolism were PCR‐amplified and screened to identify potentially beneficial alleles. To augment efficiency, the 600‐bp amplicons were directly sequenced in a non‐overlapping manner in Illumina MiSeq, obviating the need for a fragmentation step before library preparation. A comparison of the different pooling depths revealed that heterozygous mutations could be identified up to 128‐fold pooling. An evaluation of six different software programs (camba , crisp , gatk unified genotyper , lofreq , snver and vipr ) revealed that no software program was robust enough to predict mutations with high fidelity. Among these, crisp and camba predicted mutations with lower false discovery rates. The false positives were largely eliminated by considering only mutations commonly predicted by two different software programs. The screening of 23.47 Mb of tomato genome yielded 75 predicted mutations, 64 of which were confirmed by Sanger sequencing with an average mutation density of 1/367 Kb. Our results indicate that NGS combined with multiple variant detection tools can reduce false positives and significantly speed up the mutation discovery rate.  相似文献   

16.
Chemical mutagenesis is routinely used to create large numbers of rare mutations in plant and animal populations, which can be subsequently subjected to selection for beneficial traits and phenotypes that enable the characterization of gene functions. Several next‐generation sequencing (NGS)‐based target enrichment methods have been developed for the detection of mutations in target DNA regions. However, most of these methods aim to sequence a large number of target regions from a small number of individuals. Here, we demonstrate an effective and affordable strategy for the discovery of rare mutations in a large sodium azide‐induced mutant rice population (F2). The integration of multiplex, semi‐nested PCR combined with NGS library construction allowed for the amplification of multiple target DNA fragments for sequencing. The 8 × 8 × 8 tridimensional DNA sample pooling strategy enabled us to obtain DNA sequences of 512 individuals while only sequencing 24 samples. A stepwise filtering procedure was then elaborated to eliminate most of the false positives expected to arise through sequencing error, and the application of a simple Student's t‐test against position‐prone error allowed for the discovery of 16 mutations from 36 enriched targeted DNA fragments of 1024 mutagenized rice plants, all without any false calls.  相似文献   

17.
Serological performances obtained with five reagents for anti-LAV/HTLVIII antibody screening were compared in individual test and in pool. A panel of 55 selected samples and 2,079 pools prepared from 10,395 unselected samples of blood donors was studied. A first dilution is achieved by pooling, then a second dilution allows to obtain the exact working dilution recommended for the test. The sensitivity in pool method is always similar to the sensitivity in individual test, no false negative was observed. The specificity, evaluated on unselected samples, is slightly inferior to that observed in individual test: false-positive rate is in generally less than 3% compared to 2% average rate routinely observed with individual test. These results allow to propose this method, which save about 75% of the reagent cost, for blood donor screening in all laboratories and especially in developing countries.  相似文献   

18.
The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry), with direct sequencing and to investigate the limit of detection (LOD) of both PCR-based methods. We identified EGFR mutations in 21 (16%) of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%), which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%). Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+) yielded similar results. Immunohistochemistry (IHC) staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.  相似文献   

19.

Background

In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis.

Results

We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership.

Conclusions

The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.  相似文献   

20.
Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号