首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为探讨旧大陆食果和食蜜蝙蝠的食性类型不同是否造成其取食器官舌长度及结构的差异,本研究以2种食果蝙蝠犬蝠(Cynopterus sphinx)和棕果蝠(Rousettus leschenaultii)以及1种食蜜蝙蝠长舌果蝠(Eonycteris spelaea)为研究对象,比较了这3个物种间舌的差异.犬蝠、棕果蝠和长舌果蝠伸入直径为2 cm试管的最大舌长度L1(包括伸入试管的吻部和吻部以外的舌长)分别为(29.19±0.52)mm、(35.05±0.82) mm、(49.34±1.64) mm;伸出吻端外部的舌长L3分别为(16.25±0.53)mm、(19.25±0.79) mm、(31.88 ± 1.56) mm;与体重转换后的最大舌长度,即转换L1分别为(8.57±0.17) mm/g1/3、(7.90 ±0.27) mm/g1/3、(12.41 ±0.40) mm/g1/3;与体重转换后的伸出吻端外部的舌长,即转换L3分别为(4.77±0.16) mm/g1/3、(4.34±0.22) mm/g1/3、(8.01 ±0.38) mm/g1/3;与体重转换后的解剖舌长分别为(5.56 ±0.16) mm/g1/3、(5.35 ±0.14) mm/g1/3、(6.65±0.38)mm/g1/3.此5个参数种间比较均差异显著,食蜜类的长舌果蝠的5个参数均显著长于食果类犬蝠和棕果蝠的相应参数.通过比较3种蝙蝠的舌结构发现,长舌果蝠的舌尖尖细且具有毛刷状丝状乳头结构,舌面及两侧凹槽较多;犬蝠和棕果蝠的舌尖钝圆,舌面乳头和凹槽较少而平缓.本文结果表明,旧大陆食蜜蝙蝠与食果蝙蝠在舌长度和舌结构上存在明显差异,可能与捕食行为的差异有关.  相似文献   

2.
为探讨旧大陆食果和食蜜蝙蝠的食性类型不同是否造成其取食器官舌长度及结构的差异,本研究以2种食果蝙蝠犬蝠(Cynopterus sphinx)和棕果蝠(Rousettus leschenaultii)以及1种食蜜蝙蝠长舌果蝠(Eonycteris spelaea)为研究对象,比较了这3个物种间舌的差异。犬蝠、棕果蝠和长舌果蝠伸入直径为2 cm试管的最大舌长度L1(包括伸入试管的吻部和吻部以外的舌长),分别为(29.19?0.52)mm、(35.05?0.82)mm、(49.34?1.64)mm;伸出吻端外部的舌长L3分别为(16.25?0.53)mm、(19.25?0.79)mm、(31.88?1.56)mm;与体重转换后的最大舌长度,即转换L1分别为(8.57?0.17)mm/3√g、(7.90?0.27)mm/3√g、(12.41?0.40)mm/3√g;与体重转换后的伸出吻端外部的舌长,即转换L3分别为(4.77?0.16)mm/3√g、(4.34?0.22)mm/3√g、(8.01?0.38)mm/3√g;与体重转换后的解剖舌长分别为(5.56?0.16)mm/3√g、(5.35?0.14)mm/3√g、(6.65?0.38)mm/3√g。此5个参数种间比较均差异显著,食蜜类的长舌果蝠的5个参数均显著长于食果类犬蝠和棕果蝠的。通过比较3种蝙蝠的舌结构发现,长舌果蝠的舌尖尖细且具有毛刷状丝状乳头结构,舌面及两侧凹槽较多;犬蝠和棕果蝠的舌尖钝圆,舌面乳头和凹槽较少而平缓。本文结果表明,旧大陆食蜜蝙蝠与食果蝙蝠在舌长度和舌结构上存在明显差异,可能与捕食行为上的差异有关。  相似文献   

3.
舌头通常具有味觉、消化和免疫等重要功能。由于不同的食物含有不同的营养成分,我们推测舌头中和食性相关的基因在不同食性的动物中可能具有表达差异。为了检验此假说,本研究选取三种蝙蝠(大长舌果蝠(Eonycteris spelaea)、中华菊头蝠(Rhinolophus sinicus)和大足鼠耳蝠(Myotis ricketii))为研究对象,利用RNA高通量测序技术获得了三种蝙蝠舌头的转录组数据。比较转录组分析显示,在三种蝙蝠舌头中,表达量普遍最高的基因主要具有免疫功能,说明这些基因对于维持舌头正常的功能起到不可或缺的作用;另一方面,相对于食虫的中华菊头蝠和大足鼠耳蝠,与糖类代谢相关的基因在食蜜的大长舌果蝠中显著高表达,提示这些基因在这三种蝙蝠的舌头中具有表达差异。我们的研究不仅丰富了蝙蝠的转录组资源,还证实了舌头中参与糖类代谢的基因表达差异可能和蝙蝠食性分化紧密相关。  相似文献   

4.
韩宝银  汪凯  焦恒武 《兽类学报》2016,36(4):422-428
翼手目动物(俗称蝙蝠)的食性分化显著,不同食性的蝙蝠具有显著不同的嗅球大小。为了研究嗅觉是否影响了蝙蝠食性的进化,我们利用网上已公布的10种蝙蝠基因组的数据,通过同源比对的方法鉴定出所有的嗅觉受体基因,并进行嗅觉受体基因亚家族的分类,进而比较嗅觉受体基因亚家族的数目差异。结果显示,蝙蝠的嗅觉受体基因与其它哺乳动物一样,都可以分为13个单系起源的亚家族;在Yinpterochiroptera亚目中,OR1/3/7、OR2/13、OR5/8/9等3个嗅觉受体亚家族在食果蝙蝠中均发生了不同程度的扩张,基因数目显著地多于食虫蝙蝠,提示嗅觉在食果蝙蝠取食过程中具有重要的作用。因此,本研究在基因组水平上重现了蝙蝠嗅觉受体基因的进化历史,揭示了3个嗅觉受体基因亚家族的功能可能与食果蝙蝠的食性相关,突出了嗅觉对动物食性的重要作用.  相似文献   

5.
食鱼蝙蝠形态和行为特化研究   总被引:1,自引:0,他引:1  
总结了食鱼蝙蝠种类、分布 ,及其形态结构、回声定位功能和捕食行为的研究成果。比较食鱼蝙蝠与近水面“拖网式”食虫蝙蝠在形态、回声定位信号及捕食行为方面的异、同 ,推测食鱼蝙蝠起源于“拖网式”食虫蝙蝠类 ;体形和回声定位信号的几种特异性是捕食行为进化压力 ,而环境是决定因素。  相似文献   

6.
翼手目动物(蝙蝠)的食性多样性丰富,其食物包括昆虫、鱼类、两栖动物、爬行动物、鸟类、哺乳动物、植物果实、花、花粉、花蜜、叶片和血液等。其中,大约70%的蝙蝠主要以昆虫为食,而以血液为食的吸血蝙蝠只有3种,它们是哺乳动物中唯一的仅以血液为食的动物类群。因此,吸血蝙蝠是研究动物食性演化的重要模式动物。本文综述了吸血蝙蝠在形态学、生理学、行为学、感觉系统和肠道微生物等方面的研究,指出了吸血蝙蝠食性特化的适应性特征。随着普通吸血蝠高质量基因组的公布,我们将有机会探究食性相关基因在吸血蝙蝠中的功能改变,阐明动物食性转变的分子机理。本文将为吸血蝙蝠和其它动物食性转变的研究提供有益的参考。  相似文献   

7.
蝙蝠的食果性,食蜜性   总被引:3,自引:0,他引:3  
1食果性吃果实、花、蜜和花粉的习性存在于生活在热带和亚热带的骗幅中。旧大陆大骗幅亚目(Megachir0Ptera)中的食果蜗除狐幅科(PteroPodidae)外似乎都专一地食果或食蜜。管鼻果幅属(Nyctimene)和果幅属(Rousettus)可能偶尔食虫,而且在犬幅属(Cyn0Pterus)、短吻果蝇属(Penthetor)、斑翅果幅属(Balionycterls)和大长舌果幅属(Eonyteris)编幅胃中也发现了昆虫的肢节,但这也有可能是在食果、花和蜜时偶尔吞入的。在新大陆,这种以植物为食的习性在叶口幅科(Phyllostomidae)的大多数种独立进化而来。几乎无须怀疑,叶…  相似文献   

8.
咬合力作为衡量动物生存能力的重要指标,可以在一定程度上反映动物捕食、反捕食和争夺配偶的能力。对于蜥蜴类动物而言,头部形态和咬合力大小之间常呈现显著线性关系。通过测量2018年7月采集于新疆霍城县图开沙漠的24号草原蜥(Trapelussanguinolenta)(雌13,雄11)的头部形态指标,并使用薄膜压力测试仪测定咬合力,采用单因素方差分析(ANOVA)、主成分分析、模型拟合及逐步回归4种方法探究草原蜥咬合力的两性差异及其与头部形态指标的关系。结果表明,草原蜥头体长、头长、头宽、头高、口宽和下颌长在两性个体间均无显著差异,草原蜥两性个体之间咬合力也没有显著差异。主成分分析及赤池信息模型拟合结果均显示,头长、头宽和下颌长是影响草原蜥咬合力的重要因素,逐步回归分析揭示草原蜥的咬合力主要受头宽影响。上述研究结果表明,草原蜥的咬合力受头部形态大小的影响,但两性个体之间咬合力却不存在显著差异,这与头部形态特征未表现出两性差异一致,这可能是草原蜥对灌丛生活的适应,具体而言,是头部大小与运动权衡的结果。  相似文献   

9.
食虫蝙蝠与昆虫之间的相互作用和协同进化关系   总被引:1,自引:0,他引:1  
食虫蝙蝠与昆虫之间是捕食和被捕食的关系,夜行性昆虫是食虫蝙蝠主要的食物来源。在漫长的协同进化中,蝙蝠施加的捕食压力导致夜行性昆虫一系列特征的进化,其中一部分昆虫进化出能听到蝙蝠的超声波信号并采取逃跑行为或者能通过其它方式躲避蝙蝠,同时昆虫的适应性特征同样影响着蝙蝠的回声定位和捕食策略。本文从蝙蝠捕食昆虫的种类、昆虫对蝙蝠捕食的反应和食虫性蝙蝠对昆虫防卫的适应对策等三个方面对食虫蝙蝠与昆虫之间的相互关系进行了概述。  相似文献   

10.
鸟类的咬合力受食性、种内竞争和捕食压力等多种生态因素的影响,可作为其生态适应特征的重要指标。但目前关于鸟类的咬合力及其影响因素却鲜有研究,为此,我们使用咬合力传感器,对同属的两个近缘鸟种,麻雀(Passer montanus)和山麻雀(P.cinnamomeus)的咬合力进行了比较研究。结果表明,山麻雀(n=12)的咬合力显著大于麻雀(n=59)(t=3.754,P0.01),但山麻雀(t=0.449,P0.05)和麻雀(Z=﹣1.198,P0.05)的雌雄个体间咬合力均无差异,同时,山麻雀的头宽(t=﹣3.713,P0.01)、头高(t=﹣5.405,P0.01)和喙宽(t=﹣6.201,P0.01)均显著大于麻雀。尽管个体的咬合力与其身体各参数指标无显著相关性,但在种间,头和喙的大小可能是影响两者咬合力的重要因素,由于两者的一些生态适应特征可通过头大小和喙型体现,推测两者生境和食性的差异可能是影响其咬合力大小的主要原因。  相似文献   

11.
The exceptional diversity of neotropical bat communities is sustained by an intricate partitioning of available resources among the member species. Trophical specialization is considered an important evolutionary avenue towards niche partitioning in neotropical phyllostomid bats. From an ancestral insectivorous condition, phyllostomids evolved into highly specialized frugivorous, carnivorous, nectarivorous, piscivorous and even sanguivorous species. Previously, correlations between cranial morphology and trophic ecology within this group have been documented. Here, we examine the evolutionary relationships between bite force and head shape in over 20 species of bats from a single tropical savannah bat community. The results show that bite force increases exponentially with body size across all species examined. Despite the significant differences between large dietary groups using traditional analysis (i.e. non-phylogenetic) and the strong evolutionary correlations between body mass and bite force, phylogenetic analyses indicated no differences in bite performance between insectivorous, omnivorous and frugivorous bats. Comparisons of three species with highly specialized feeding habits (nectarivory, piscivory and sanguivory) with the rest of the species in the community indicate that specialization into these niches comes at the expense of bite performance and, hence, may result in a reduction of the trophic niche breadth.  相似文献   

12.
D'Amore DC  Moreno K  McHenry CR  Wroe S 《PloS one》2011,6(10):e26226
In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics.  相似文献   

13.
Aim Ecological interactions are among the most important biotic factors influencing the processes of speciation and extinction. Our aim was to test whether diversification rates of New World Noctilionoidea bats are associated with specialization for frugivory, and how this pattern differs between the mainland and the West Indies. Location The New World. Methods We reconstructed a time‐calibrated molecular phylogenetic hypothesis for the New World genera of the superfamily Noctilionoidea. We compiled data on diet, morphology, geographical distribution and number of ecoregions in which each genus occurs. Then, using the phylogenetic tree constructed, we tested whether diversification was driven by diet (animalivorous and sanguinivorous versus nectarivorous and frugivorous) and specialization for frugivory. Afterwards, we conducted phylogenetic comparative analyses to identify correlates of species richness and net diversification rates. Results The diversification rate was higher in mutualistic than in antagonistic clades in mainland and Antillean biogeographical scenarios, but only strictly frugivorous clades showed a markedly higher diversification rate than the rest of the genera. Geographical range and number of ecoregions were positively associated with species richness and diversification rate in continental and insular lineages. Lower body mass, lower forearm length and specialization for frugivory were significantly positively correlated with higher diversification rates in continental lineages, whereas these parameters were negatively correlated in Antillean lineages. Main conclusions The direction of the relationship of intrinsic factors (specialization for frugivory and body size) with diversification of noctilionoid bats depends on the biogeographical context, whereas the direction of the relationship of extrinsic factors (geographical range and number of ecoregions) with diversification is consistent in both mainland and the West Indian lineages.  相似文献   

14.
15.
Sexual dimorphisms in body size and head size are common among lizards and are often related to sexual selection on male fighting capacity (organismal performance) and territory defence. However, whether this is generally true or restricted to lizards remains untested. Here we provide data on body and head size, bite performance and indicators of mating success in the tuatara (Sphenodon punctatus), the closest living relative to squamates, to explore the generality of these patterns. First, we test whether male and female tuatara are dimorphic in head dimensions and bite force, independent of body size. Next, we explore which traits best predict bite force capacity in males and females. Finally, we test whether male bite force is correlated with male mating success in a free‐ranging population of tuatara (Sphenodon punctatus). Our data confirm that tuatara are indeed dimorphic in head shape, with males having bigger heads and higher bite forces than females. Across all individuals, head length and the jaw closing in‐lever are the best predictors of bite force. In addition, our data show that males that are mated have higher absolute but not relative bite forces. Bite force was also significantly correlated to condition in males but not females. Whereas these data suggest that bite force may be under sexual selection in tuatara, they also indicate that body size may be the key trait under selection in contrast to what is observed in squamates that defend territories or resources by biting. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 287–292.  相似文献   

16.
The earliest record of plant visiting in bats dates to the Middle Miocene of La Venta, the world''s most diverse tropical palaeocommunity. Palynephyllum antimaster is known from molars that indicate nectarivory. Skull length, an important indicator of key traits such as body size, bite force and trophic specialization, remains unknown. We developed Bayesian models to infer skull length based on dental measurements. These models account for variation within and between species, variation between clades, and phylogenetic error structure. Models relating skull length to trophic level for nectarivorous bats were then used to infer the diet of the fossil. The skull length estimate for Palynephyllum places it among the larger lonchophylline bats. The inferred diet suggests Palynephyllum fed on nectar and insects, similar to its living relatives. Omnivory has persisted since the mid-Miocene. This is the first study to corroborate with fossil data that highly specialized nectarivory in bats requires an omnivorous transition.  相似文献   

17.
Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73–285 cm total length). Theoretical bite force ranged from 36 to 2128 N at the most anterior bite point, and 170 to 5914 N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible “performance gain” early in the life history of C. leucas.  相似文献   

18.
New World leaf-nosed bats (Family Phyllostomidae) display incredible craniofacial diversity that is associated with their broad range of dietary preferences. The short and broad palates of highly frugivorous bats are functionally linked to high bite forces, and the long and narrow palates of nectarivorous bats to flower feeding. Although the functional correlates and evolutionary history of shape variation in phyllostomid palates are beginning to be understood, the specific developmental processes that govern palate diversification remain unknown. To begin to resolve this issue, this study quantified palate morphology in seven phyllostomid species from a range of developmental stages and in adults. This sample includes species with short and broad, long and narrow, and intermediate palate shapes, and thereby covers the range of palate shapes displayed by phyllostomids. Results indicate that while initial palate shape (i.e., width vs. length) varies among species, the pattern of this variation does not match that observed in adults. In contrast, the relative growth of palate width and length in developing phyllostomids and the ratio of these axes in adults are significantly correlated. These and other results suggest that evolutionary alterations in patterns of palate growth have governed the diversification of palate shapes in adult phyllostomids. This implies that the diverse palate shapes of phyllostomids are the result of relatively subtle evolutionary changes in later rather than earlier development events.  相似文献   

19.
Aside from the pervasive effects of body mass, much controversy exists as to what factors account for interspecific variation in basal metabolic rates (BMR) of mammals; however, both diet and phylogeny have been strongly implicated. We examined variation in BMR within the New World bat family Phyllostomidae, which shows the largest diversity of food habits among mammalian families, including frugivorous, nectarivorous, insectivorous, carnivorous and blood-eating species. For 27 species, diet was taken from the literature and BMR was either measured on animals captured in Brazil or extracted from the literature. Conventional (nonphylogenetic) analysis of covariance (ANCOVA), with body mass as the covariate, was first used to test the effects of diet on BMR. In this analysis, which assumes that all species evolved simultaneously from a single ancestor (i.e., a "star" phylogeny), diet exerted a strong effect on mass-independent BMR: nectarivorous bats showed higher mass-independent BMR than other bats feeding on fruits, insects or blood. In phylogenetic ANCOVAs via Monte Carlo computer simulation, which assume that species are part of a branching hierarchical phylogeny, no statistically significant effect of diet on BMR was observed. Hence, results of the nonphylogenetic analysis were misleading because the critical values for testing the effect of diet were underestimated. However, in this sample of bats, diet is perfectly confounded with phylogeny, because the four dietary categories represent four separate subclades, which greatly reduces statistical power to detect a diet (= subclade) effect. But even if diet did appear to exert an influence on BMR in this sample of bats, it would not be logically possible to separate this effect from the possibility that the dietary categories differ for some other reason (i.e., another synapomorphy of one or more of the subclades). Examples such as this highlight the importance of considering phylogenetic relationships when designing new comparative studies, as well as when analyzing existing data sets. We also discuss some possible reasons why BMR may not coadapt with diet.  相似文献   

20.
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade‐offs. Here, we investigate whether a trade‐off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three‐dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade‐off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency‐specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号