首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Both bovine myeloperoxidase and lactoperoxidase contain one calcium per iron with no other metal present in significant amount. Calcium is bound with high affinity and is removed upon exposure to 6 M guanidine hydrochloride/EGTA which results in precipitation of protein. Computer amino acid sequence analyses of human myeloperoxidase reveal two plausible calcium binding sites. This is the first evidence for the presence of calcium in these peroxidases.  相似文献   

2.
The mammalian mitochondrial complex consisting of elongation factors EF-Tu and EF-Ts (EF-Tu.Tsmt) is capable of efficiently binding aminoacyl-tRNA to the ribosome in the presence and absence of guanine nucleotides. In the presence of GTP the binding reaction is catalytic. In the absence of guanine nucleotides, or in the presence of a non-hydrolyzable GTP analog, only one round of ribosome binding occurs. EF-Tu.Tsmt is capable of forming a ternary complex with GTP and Escherichia coli Phe-tRNA as demonstrated by gel filtration chromatography, nitrocellulose filter binding, and by protection of the aminoacyl-tRNA bond from hydrolysis. GDP and the non-hydrolyzable GTP analog guanyl-5'-yl imidodiphosphate are also capable of facilitating ternary complex formation with EF-Tu.Tsmt, but are less effective. No kinetic advantage results from the formation of this ternary complex prior to ribosome binding, and EF-Tu.Tsmt may actually bind aminoacyl-tRNA directly to the ribosome prior to binding GTP. These results suggest that a variation of the prokaryotic elongation cycle is occurring in animal mitochondria. N-Ethylmaleimide inhibits the activity of EF-Tu.Tsmt in polymerization and in ribosome binding. However, the activity of the EF-Tsmt which can be measured independently, is not altered.  相似文献   

3.
Elongation factor G (EF-G) is rapidly inactivated when irradiated at 253.7 nm. The inactivation follows first-order single-hit kinetics with a quantum efficiency of 3.15 × 10?5 μmol/μE. Inclusion of either GTP or GDP in the irradiation mixture does not alter the kinetics of inactivation, but does result in the covalent attachment of nucleotide to between 10 and 20% of the EF-G. This relatively low percentage of cross-linking is due to the rapid rate of photoinactivation as compared to the slower rate of covalent attachment. If EF-G is reacted before irradiation with N-ethylmaleimide, a modification known to block the nucleotide binding site [Rohrbach and Bodley (1976) J. Biol. Chem.251, 930], essentially no nucleotide can be photo-cross-linked to EF-G. Treatment of the photo-cross-linked GTP-EF-G with Raney nickel led to the liberation of the nucleotide moiety, indicating that the photo-cross-link to EF-G occurred through a sulfur atom. Although the formation of the EF-G nucleotide complex has been shown to be an obligatory first step in the formation of the EF-G nucleotide ribosome complex [Rohrbach and Bodley (1976) Biochemistry15, 4565], the covalent EF-G-nucleotide adduct cannot form a ternary complex with the ribosome. The presence of both nucleotide and ribosomes during irradiation drastically alters the kinetics of inactivation. The inactivation under these conditions follows multiple-hit kinetics with an initial period during which no EF-G activity is lost. Following this lag period, EF-G is inactivated at the same rate at which ribosomes lose their ability to bind EF-G. No nucleotide is cross-linked to EF-G or the ribosome under these conditions.  相似文献   

4.
Bovine mitochondrial ribosomes. Elongation factor specificity   总被引:2,自引:0,他引:2  
The activity of bovine mitochondrial ribosomes with elongation factors from a variety of sources including the mitochondria of lower eukaryotes, chloroplasts, Gram-negative bacteria, Gram-positive bacteria, and the eukaryotic cell cytoplasm has been investigated. Bovine mitochondrial ribosomes are active with homologous mitochondrial elongation factor (EF)-G but display no activity with the mitochondrial or chloroplast translocases from the lower eukaryote Euglena gracilis, with Escherichia coli or Bacillus subtilis EF-G or with cytoplasmic EF-2. In contrast to the results obtained with the translocases, E. coli EF-Tu, B. subtilis EF-Tu, and Euglena chloroplast EF-Tu all function to a significant extent on the mitochondrial ribosomes. Cytoplasmic EF-1 has barely detectable activity on the animal mitochondrial ribosomes. The polymerization of phenylalanine by these ribosomes is dependent on poly(U), displays a rather broad Mg2+ optimum around 12 mM, and proceeds most rapidly at low monovalent ion concentrations.  相似文献   

5.
6.
A high affinity binding site for the HIV-1 nucleocapsid protein.   总被引:4,自引:0,他引:4       下载免费PDF全文
The nucleocapsid protein (NC) of HIV-1 is a small zinc finger protein that contributes to multiple steps of the viral life cycle, including the proper encapsidation of HIV RNA. This is accomplished through an interaction between NC and a region at the 5'-end of the RNA, defined as the Psi element. However, the specificity of NC for Psi or for RNA in general is not well understood. To study this problem, we used SELEX to identify high affinity RNA ligands that bind to NC. A 'winner' molecule (SelPsi), as well as a subregion of Psi RNA, were further characterized to understand the interaction between NC and SelPsi and its relationship to the interaction between NC and Psi. The comparison makes predictions about the sequence and structure of a high affinity binding site within the HIV-1 Psi element.  相似文献   

7.
Binding of fibronectin to the small proteoglycan decorin plays an important role in cell differentiation and cell migration. The cartilage-specific (V+C)(-) fibronectin isoform, in which nucleotides that normally encode the protein segments V, III(15), and I(10) are spliced out, is one of the major splice variants present in cartilage matrices. Full-length and truncated cDNA constructs were used to express recombinant versions of fibronectin. Results demonstrated that the (V+C)(-) isoform has a higher affinity for decorin. Dissociation constants for decorin and fibronectin interaction were calculated to be 93 nm for the V(+)C(+) isoform and 24 nm and 223 nm for (V+C)(-) fibronectin. Because heparin competed with decorin competitively, binding of decorin to fibronectin likely occurs at a heparin-binding region. We propose that alternative splicing of the V and C regions changes the global conformation of fibronectin in such a way that it opens an additional decorin-binding site. This conformational change is responsible for the higher affinity of the (V+C)(-) fibronectin isoform for decorin.  相似文献   

8.
9.
It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the binding of D-myo-inositol 1,4,5-trisphosphate (InsP(3)) to a receptor located on the endoplasmic reticulum (ER) triggers an efflux of calcium release from the ER. Sites that bind InsP(3) with high affinity and specificity have also been described in plant cells, but their precise intracellular locations have not been conclusively identified. In contrast to animal cells, it has been suggested that in plants the vacuole is the major intracellular store of calcium involved in signal induced calcium release. The aim of this work was to determine the intracellular localization of InsP(3)-binding sites obtained from 3-week-old Chenopodium rubrum leaves. Microsomal membranes were fractionated by sucrose density gradient centrifugation in the presence and absence of Mg(2+) and alternatively by free-flow electrophoresis. An ER-enriched fraction was also prepared. The following enzymes were employed as specific membrane markers: antimycin A-insensitive NADH-cytochrome c reductase for ER, cytochrome c oxidase for mitochondrial membrane, pyrophosphatase for tonoplast, and 1,3-beta-D-glucansynthase for plasma membrane. In all membrane separations, InsP(3)-binding sites were concentrated in the fractions that were enriched with ER membranes. These data clearly demonstrate that the previously characterized InsP(3)-binding site from C. rubrum is localized on the ER. This finding supports previous suggestions of an alternative non-vacuolar InsP(3)-sensitive calcium store in plant cells.  相似文献   

10.
K. Kobayashi  B. Zbell  J. Reinert 《Protoplasma》1981,106(1-2):145-155
Summary Carrot suspension cells contain one class of high affinity binding sites for cytokinin in an 80,000 × g particulate fraction. Binding of [8-14C]-benzylaminopurine (BA) to this fraction assayed by a sedimentation method was found to be optimal at pH 6.0 and thermolabile. Specific binding was proved in competition experiments in which labelled BA was displaced by increasing concentrations of unlabelled BA. Scatchard plots of these results displayed a dissociation constant (Kd) of 33 ± 6 nM. The number of binding sites found was 1,100 ± 120 fmol g–1 fresh weight which is equivalent to a frequency of 23,000 binding sites per cell. The specificity of the binding sites to cytokinins and their analogues followed the sequence BA with highest affinity, kinetin, zeatin, iP and adenine. The cytokinin ribosides generally had a lower affinity than their cytokinin bases, and the affinity decreased in the order [9 R] BA, [9 R] iP, [9 R] Z, [9 R] A.  相似文献   

11.
A membrane preparation from Avena sativa root has been found to contain only one low-affinity IAA-binding site having a Kd value of 8.4 ×  相似文献   

12.
Elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. During the elongation cycle, EF-Tu interacts with guanine nucleotides, aa-tRNA and its nucleotide exchange factor (EF-Ts). Quantitative determination of the equilibrium dissociation constants that govern the interactions of mammalian mitochondrial EF-Tu (EF-Tu(mt)) with guanine nucleotides was the focus of the work reported here. Equilibrium dialysis with [3H]GDP was used to measure the equilibrium dissociation constant of the EF-Tu(mt) x GDP complex (K(GDP) = 1.0 +/- 0.1 microM). Competition of GTP with a fluorescent derivative of GDP (mantGDP) for binding to EF-Tu(mt) was used to measure the dissociation constant of the EF-Tu(mt) x GTP complex (K(GTP) = 18 +/- 9 microM). The analysis of these data required information on the dissociation constant of the EF-Tu(mt) x mantGDP complex (K(mGDP) = 2.0 +/- 0.5 microM), which was measured by equilibrium dialysis. Both K(GDP) and K(GTP) for EF-Tu(mt) are quite different (about two orders of magnitude higher) than the dissociation constants of the corresponding complexes formed by Escherichia coli EF-Tu. The forward and reverse rate constants for the association and dissociation of the EF-Tu(mt) x GDP complex were determined using the change in the fluorescence of mantGDP upon interaction with EF-Tu(mt). These values are in agreement with a simple equilibrium binding interaction between EF-Tu(mt) and GDP. The results obtained are discussed in terms of the recently described crystal structure of the EF-Tu(mt) x GDP complex.  相似文献   

13.
Escherichia coli elongation factor (EF-Tu) and the corresponding mammalian mitochondrial factor, EF-Tumt, show distinct differences in their affinities for guanine nucleotides and in their interactions with elongation factor Ts (EF-Ts) and mitochondrial tRNAs. To investigate the roles of the three domains of EF-Tu in these differences, six chimeric proteins were prepared in which the three domains were systematically switched. E. coli EF-Tu binds GDP much more tightly than EF-Tumt. This difference does not reside in domain I alone but is regulated by interactions with domains II and III. All the chimeric proteins formed ternary complexes with GTP and aminoacyl-tRNA although some had an increased or decreased activity in this assay. The activity of E. coli EF-Tu but not of EF-Tumt is stimulated by E. coli EF-Ts. The presence of any one of the domains of EF-Tumt in the prokaryotic factor reduced its interaction with E. coli EF-Ts 2-3-fold. In contrast, the presence of any of the three domains of E. coli EF-Tu in EF-Tumt allowed the mitochondrial factor to interact with bacterial EF-Ts. This observation indicates that even domain II which is not in contact with EF-Ts plays an important role in the nucleotide exchange reaction. EF-Tsmt interacts with all of the chimeras produced. However, with the exception of domain III exchanges, it inhibits the activities of the chimeras indicating that it could not be productively released to allow formation of the ternary complex. The unique ability of EF-Tumt to promote binding of mitochondrial Phe-tRNAPhe to the A-site of the ribosome resides in domains I and II. These studies indicate that the interactions of EF-Tu with its ligands is a complex process involving cross-talk between all three domains.  相似文献   

14.
Binding of lithocholic acid, bilirubin, and gossypol to glutathione S-transferase B (ligandin or transferase YaYc) was compared using four methods. Tryptophan quenching revealed a single high affinity site for bilirubin and gossypol but could not be used for lithocholic acid. Both displacement of the fluorescent probe, 1-anilino-8-naphthalenesulfonate, and spectral changes induced by bilirubin binding demonstrated a common high affinity site for which all three ligands compete. Similar results were obtained by equilibrium dialysis. The dissociation constants for the binding of both bilirubin and lithocholic acid were comparable with the various methods (range 0.2-0.7 microM). Thus, lithocholic acid and bilirubin share a high affinity binding site on gluthathione S-transferase B that appears to be separate from the binding site for substrates.  相似文献   

15.
The regulation of muscarinic receptor binding by guanine nucleotides and N-ethylmaleimide (NEM) was investigated using the agonist ligand, [3H] cis methyldioxolane ([3H] CD). Characterization studies on rat forebrain homogenates showed that [3H] CD binding was linear with tissue concentration and was unaffected by a change in pH from 5.5 to 8.0. The regional variation in [3H] CD binding in the rat brain correlated generally with [3H] (?)3-quinuclidinyl benzilate ([3H] (?)QNB) binding, although the absolute variation in binding was somewhat less. At a concentration of 100 μM, the GTP analogue, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], caused a 43–77% inhibition of [3H] CD binding in the corpus striatum, ileum, and heart. The results of binding studies using several Gpp(NH)p concentrations demonstrated that the potency of this guanine nucleotide for inhibition of [3H] CD binding was greater in the heart than in the ileum. In contrast to its effects on [3H] CD binding, Gpp(NH)p caused an increase in [3H] (?)QNB binding in the heart heart and ileum and no change in [3H] (?)QNB binding in the corpus striatum. When measured by competitive inhibition of [3H] (?)QNB binding to the longitudinal muscle of the ileum, Gpp(NH)p (100 μM) caused an increase in the IC50 values of a series of agonists in a manner that was correlated with the efficacy of these compounds. The results of binding studies on NEM treated forebrain homogenates revealed an enhancement of [3H] CD binding by NEM.  相似文献   

16.
Mechanism of mRNA binding to bovine mitochondrial ribosomes   总被引:3,自引:0,他引:3  
The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria.  相似文献   

17.
Preparations of photosystem II complex from spinach chloroplasts with Triton X-100 were treated with 1 M KCl to release 17 KDa and 23 KDa polypeptides. The inhibited oxygen evolution activity could be reactivated by adding high concentration (mM) of Ca++ or by reconstituting 17 KDa and 23 KDa polypeptides which were found to promote high affinity binding of Ca++ to the reconstituted membranes (Ghanotakis et al. FEBS (1984) 170, 169-173). Inclusion of 50 mM Ca++ during KCl treatment did not prevent the release of 17 KDa and 23 KDa polypeptides but protected oxygen evolution from being inactivated. It is explained by preservation of the high affinity binding site for Ca++ if, Ca++ is present during the salt treatment even though depletion of 17 KDa and 23 KDa polypeptides usually results in replacement by a low affinity (mM) binding site for Ca++. It also implies that the high affinity binding site is not located on 17 KDa and 23 KDa polypeptides.  相似文献   

18.
HMGB2 (HMG2) protein binds with DNA duplex in a sequence-nonspecific manner, then bends and unwinds the DNA. In DNA cyclization analyses for the bending activity of HMGB2, two unidentified bands, denoted alpha and beta, were observed in addition to monomer circular DNA (1C) on the gel. Re-electrophoresis and proteinase K digestion revealed that alpha and beta are complexes of circularized probe DNA (seeming 1C) with HMGB2 (K(d) approximately 10(-10) M). The DNA components of alpha and beta (alpha- and beta-DNA) showed higher affinities to HMGB2 than did the linear probe DNA (K(d) approximately 10(-7) M). The DNAs have distorted structures containing partial single-stranded regions. Nicked circular molecules presumably due to severe DNA distortion by HMGB2 were observed in alpha- and beta-DNA, in addition to closed circular double-stranded molecules. The alpha and beta bands were not formed in the presence of sole DNA binding regions which are necessary for DNA bending, indicating that the acidic C-tail in the HMGB2 molecule is necessary for inducing the peculiar distorted structures of higher affinity to HMGB2. HMGB2 binds with linker DNA and/or the entry and exit of nucleosomes fixed at both ends likewise mini-circles similar to alpha-DNA and beta-DNA. Thus, the distorted structures present in alpha-DNA and beta-DNA should be important in considering the functional mechanisms in which HMGB2 participates.  相似文献   

19.
Virus-induced human alpha interferon (HuIFN-alpha) derived from Namalwa cells and purified to a specific activity of 2 X 10(8) units/mg of protein was radiolabeled with 125I-labeled Bolton and Hunter reagent to a specific activity of 4-12 microCi/micrograms of protein. The binding of this 125I-IFN to bovine kidney cells was examined at 4 degrees C. Scatchard analysis of the binding data indicate the presence of 650 binding sites/cell and binding of the ligand with an apparent Kd of 6 X 10(-11) M. Trypsin or acid treatment of cells to which 125I-IFN was bound resulted in the release of greater than or equal to 77% of the radioactivity, indicating a majority of radiolabeled material was bound to the cell surface. Antibodies against human leukocyte IFN but not antibodies against human fibroblast IFN inhibited the binding of radiolabeled IFN to the cells. The binding of 125I-IFN was not inhibited by a 75-fold molar excess of mouse IFN but was inhibited 30% by a 200-fold molar excess of human beta (fibroblast) IFN. These data are compatible with the Lower biological activities of these IFNs on bovine kidney cells. Several Escherichia coli derived HuIFN-alpha s inhibited the binding of the radiolabeled IFN to the same extent as native HuIFN-alpha s, but four fragments of HuIFN-alpha 1, an E. coli-derived 86 amino acid NH2-terminal fragment as well as 3 different synthetic carboxy-terminal fragments of 140, 56, or 46 amino acids did not inhibit binding.  相似文献   

20.
A novel outer mitochondrial membrane protein containing [2Fe-2S] clusters, mitoNEET was first identified through its binding to the anti-diabetic drug pioglitazone. Pioglitazone belongs to a family of drugs that are peroxisome proliferator-activated receptor (PPAR) gamma agonists, collectively known as glitazones. With the lack of pharmacological tools available to fully elucidate mitoNEET's function, we developed a binding assay to probe the glitazone binding site with the aim of developing selective and high affinity compounds. We used multiple thiazolidine-2,4-dione (TZD), 2-thioxothiazolidin-4-one (TTD), and 2-iminothiazolidin-4-one (ITD) compounds to establish several trends to enhance ligand development for the purpose of elucidating mitoNEET function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号