首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Diatoms show a special organisation of their plastid membranes, such that their thylakoids span the entire plastid in bands of three. While in higher plants the interaction of the light harvesting complex II and photosystem II with divalent cations (especially Mg2+) was found to take part in the interplay of electrostatic attraction and repulsion in grana membrane appression, for diatoms the key players in maintaining proper membrane distances were not identified so far. In this work, we investigated the changes in the thylakoid architecture of Thalassiosira pseudonana in reaction to different salts by using circular dichroism and fluorescence spectroscopy in combination with other techniques. We show that divalent cations have an important influence on optimal pigment organisation and thus also on maintaining membrane appression. Thereby, monovalent cations are far less effective. The concentration needed is in a physiological range and fits well with the values obtained for higher plant grana stacking, despite the fact that strict protein segregation as seen in higher plant grana is missing.  相似文献   

2.
Developing chromoplasts in the fruit of Capsicum annuum were examined by electron microscopy. Special attention was given to changes in the thylakoid system. All grana and some intergranal thylakoids in the mature chromoplasts of the seven cultivars studied underwent lysis. The particulate nature of the granal membranes disappeared during lysis before the relationship between the partitions and locules was obscured. The changes during lysis support the globular concept of membrane structure. The selective lysis of the synaptic membranes of the granal partitions may be attributed to their distinctive composition and structure. Lipid globules (osmio-philic) did not accumulate in the immediate region of granal lysis, indicating that they are not directly derived from membranes undergoing degradation. During and following granal lysis a profuse development of intergranal thylakoid membranes occurred in several cultivars. In some instances a thylakoid plexus (prolamellar body) was formed. This specialized structure of the thylakoid system occurs in the chromoplasts of other species as well as in other types of plastids. Extensive, concentrically arranged thylakoid sheets with specific interspaced membrane relationships were frequently associated with the plexus. Several types of membrane associations and interrelationships in the plastid are described. An analysis of one type of membrane configuration, the thylakoid sheets, indicated that one method of growth may be through intussusception into the original membrane. The development of thylakoid plexes and of extensive thylakoid sheets during or after granal lysis indicates that dynamic synthetic activities occur in the chromoplasts of some cultivars of pepper during fruit ripening.  相似文献   

3.
In cyanobacteria and chloroplasts, thylakoids are the complex internal membrane system where the light reactions of oxygenic photosynthesis occur. In plant chloroplasts, thylakoids are differentiated into a highly interconnected system of stacked grana and unstacked stroma membranes. In contrast, in cyanobacteria, the evolutionary progenitors of chloroplasts, thylakoids do not routinely form stacked and unstacked regions, and the architecture of the thylakoid membrane systems is only now being described in detail in these organisms. We used electron tomography to examine the thylakoid membrane systems in one cyanobacterium, Cyanothece sp. ATCC 51142. Our data showed that thylakoids form a complicated branched network with a rudimentary quasi-helical architecture in this organism. A well accepted helical model of grana-stroma architecture of plant thylakoids describes an organization in which stroma thylakoids wind around stacked granum in right-handed spirals. Here we present data showing that the simplified helical architecture in Cyanothece 51142 is lefthanded in nature. We propose a model comparing the thylakoid membranes in plants and this cyanobacterium in which the system in Cyanothece 51142 is composed of non-stacked membranes linked by fret-like connections to other membrane components of the system in a limited left-handed arrangement.Key words: cyanobacteria, Cyanothece 51142, thylakoid membrane, electron tomography, chloroplast  相似文献   

4.
In chloroplasts of land plants, the thylakoid network is organized into appressed regions called grana stacks and loosely arranged parallel stroma thylakoids. Many factors determining such intricate structural arrangements have been identified so far, including various thylakoid-embedded proteins, and polar lipids that build the thylakoid matrix. Although carotenoids are important components of proteins and the lipid phase of chloroplast membranes, their role in determining the thylakoid network structure remains elusive. We studied 2D and 3D thylakoid network organization in carotenoid-deficient mutants (ccr1-1, lut5-1, szl1-1, and szl1-1npq1-2) of Arabidopsis (Arabidopsis thaliana) to reveal the structural role of carotenoids in the formation and dynamics of the internal chloroplast membrane system. The most significant structural aberrations took place in chloroplasts of the szl1-1 and szl1-1npq1-2 plants. Increased lutein/carotene ratio in these mutants impaired the formation of grana, resulting in a significant decrease in the number of thylakoids used to build a particular stack. Further, combined biochemical and biophysical analyses revealed that hampered grana folding was related to decreased thylakoid membrane fluidity and significant changes in the amount, organization, and phosphorylation status of photosystem (PS) II (PSII) supercomplexes in the szl1-1 and szl1-1npq1-2 plants. Such changes resulted from a synergistic effect of lutein overaccumulation in the lipid matrix and a decreased level of carotenes bound with PS core complexes. Moreover, more rigid membrane in the lutein overaccumulating plants led to binding of Rubisco to the thylakoid surface, additionally providing steric hindrance for the dynamic changes in the level of membrane folding.

Increases in lutein/carotenoid ratios lead to decreased thylakoid fluidity and hamper grana folding due to carotenoid-dependent changes in both photosynthetic complexes and lipid matrix organization.  相似文献   

5.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

6.
This review provides a brief historical account of how microscopical studies of chloroplasts have contributed to our current knowledge of the structural and functional organization of thylakoid membranes. It starts by tracing the origins of the terms plastid, grana, stroma and chloroplasts to light microscopic studies of 19th century German botanists, and then describes how different types of electron microscopical techniques have added to this field. The most notable contributions of thin section electron microscopy include the elucidation of the 3-D organization of thylakoid membranes, the discovery of prolamellar bodies in etioplasts, and the structural changes in thylakoid architecture that accompany the light-dependent transformation of etioplasts into chloroplasts. Attention is then focused on the roles that freeze-fracture and freeze-etch electron microscopy and immuno electron microscopy have played in defining the extent to which the functional complexes of thylakoids are non-randomly distributed between appressed, grana and non-appressed stroma thylakoids. Studies reporting on how this lateral differentiation can be altered experimentally, and how the spatial organization of functional complexes is affected by alterations in the light environment of plants are also included in this discussion. Finally, the review points to the possible uses of electron microscope tomography techniques in future structural studies of thylakoid membranes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The concept that the two photosystems of photosynthesis cooperate in series, immortalized in Hill and Bendall''s Z scheme, was still a black box that defined neither the structural nor the molecular organization of the thylakoid membrane network into grana and stroma thylakoids. The differentiation of the continuous thylakoid membrane into stacked grana thylakoids interconnected by single stroma thylakoids is a morphological reflection of the non-random distribution of photosystem II/light-harvesting complex of photosystem II, photosystem I and ATP synthase, which became known as lateral heterogeneity.  相似文献   

8.
The changes in plastid ultrastructure in the pericarp of cucumber (Cucumis sativus L) fruit were studied during fruit yellowing (which accompanied maturation) and regreening. In the course of fruit maturation, the thylakoid system was progressively reduced, and only a small number of membranes remained in the plastids of mature fruit. At the same time, the plastoglobules increased in size, often remaining in close proximity to the degrading thylakoids. In pericarp tissue which turned green again, the thylakoid network in the plastids was gradually reconstituted. Morphological similarities between the plastids in mature and regreening fruit indicated that the chloroplasts in regreened tissue were redifferentiated from the plastids of mature fruit. Reconstitution of the thylakoid system appeared to start from two morphologically distinct types of membranes: from double membranes which resembled thylakoids and from membrane-bound bodies (MBBs). The latter appeared to form thylakoids by two mechanisms: by detachment of extensions from their surfaces and by fragmentation. The plastoglobules remained in the plastids during thylakoid system reconstitution and were often observed in close proximity to developing thylakoids. In the course of chloroplast redifferentiation, several types of membraneous structures were found to be associated with the plastid envelope: (i) vesicles which appeared to separate from the envelope and to fuse subsequently with the developing thylakoids, (ii) tubules, and (iii) double-membrane sheets which appeared asde novo forming thylakoids.  相似文献   

9.
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins.  相似文献   

10.
Severe chlorosis and ultrastructural modifications of chloroplasts occur in sunflower in response to infection by Pseudomonas syringae pv. tagetis. Chlorosis became apparent within 2 days after the cotyledons of 10-day-old sunflower seedlings were inoculated with the bacteria. The first symptoms generally appeared in the center of leaves at the second node above the cotyledons. Leaves above the second node lost essentially all of their pigmentation but remained turgid and continued to expand. Grana thylakoids became dilated and separated from the granal stacks. These thylakoid membranes did not chemically breakdown as in the case in chromoplast formation or normal chloroplast senescence. Both grana and stroma thylakoid membranes coalesced to form a large membrane sheet within the plastid. The ultrastructural changes are unlike those reported to be caused by other chlorosis-inducing bacteria or chlorosis associated with normal senescence.  相似文献   

11.
We have investigated the three-dimensional (3D) architecture of the thylakoid membranes of Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), and spinach (Spinacia oleracea) with a resolution of approximately 7 nm by electron tomography of high-pressure-frozen/freeze-substituted intact chloroplasts. Higher-plant thylakoids are differentiated into two interconnected and functionally distinct domains, the photosystem II/light-harvesting complex II-enriched stacked grana thylakoids and the photosystem I/ATP synthase-enriched, nonstacked stroma thylakoids. The grana thylakoids are organized in the form of cylindrical stacks and are connected to the stroma thylakoids via tubular junctions. Our data confirm that the stroma thylakoids are wound around the grana stacks in the form of multiple, right-handed helices at an angle of 20° to 25° as postulated by a helical thylakoid model. The junctional connections between the grana and stroma thylakoids all have a slit-like architecture, but their size varies tremendously from approximately 15 × 30 nm to approximately 15 × 435 nm, which is approximately 5 times larger than seen in chemically fixed thylakoids. The variable slit length results in less periodicity in grana/stroma thylakoid organization than proposed in the original helical model. The stroma thylakoids also exhibit considerable architectural variability, which is dependent, in part, on the number and the orientation of adjacent grana stacks to which they are connected. Whereas some stroma thylakoids form solid, sheet-like bridges between adjacent grana, others exhibit a branching geometry with small, more tubular sheet domains also connecting adjacent, parallel stroma thylakoids. We postulate that the tremendous variability in size of the junctional slits may reflect a novel, active role of junctional slits in the regulation of photosynthetic function. In particular, by controlling the size of junctional slits, plants could regulate the flow of ions and membrane molecules between grana and stroma thylakoid membrane domains.  相似文献   

12.
Plastid organization within phenotypically green leaf tissue that forms in albino plants of a genetic albino strain of Nicotiana has been examined with the transmission electron microscope. Studies revealed the presence of plastids with and without thylakoids. When present, thylakoids were loosely and irregularly scattered in the stroma or organized either into several large spindle-shaped grana or into a single compound granum with deeply indented margins. Plastids without thylakoids were vesiculated and resembled the typical genetic albino type. Plastid types were not segregrated into individual cells and no plastid type appeared to be typical for the mutant tissue. Orientation of grana and thylakoid membrane associations were noted as well as the presence of osmiophilic globules, starch grains and DNA-like fibrillar areas.  相似文献   

13.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

14.
Summary We analyzed the formation of thylakoids and grana during the development of pea chloroplasts, illuminated by white, red and blue low intensity light. The total length of granal and intergranal thylakoids, and the length of granal thylakoids per unit area of plastid section were measured. Initially the greatest increase in length of granal thylakoids and the highest incidence of grana with large thylakoid content occurred in red light. On the other hand, with illumination times of over 12 hours blue light appeared to be more efficient in stimulating grana formation and thylakoid growth.  相似文献   

15.
Changes of chloroplast thylakoid membrane stacks and Chl a/b ratio in the plumule of sacred lotus (Nelumbo nucifera Gaertn) seeds during their germination under light were as follows: Before germination there were giant grana and very low Chi a/b ratio (0.9) in the chloroplasts. Two days after germination, the thylakoid membranes of the giant grana gradually loosened and even destacked (disintegrated), the Chl a/b ratio was 1.06. Four clays after germination, the newly formed grana thylakoid membranes were 3–5 times shorter than those of the supergrana thylakoid membranes before germination and less grana stacks were seen; the Chl a/b ratio was 1.42. Six days after germination, the stacked thylakoi membranes became more orderly arranged. In addition the grana increased in number, the stroma thylakoid membranes were scarce, the Chl a/b ratio was 2.16. Eiglt days after germination, the thylakoid membranes in each granum decreased, but the total number of grana increased only slightly. In the meantime, some large starch grains and more stroma thylakoid membranes appeared; the Chl a/b ratio was 2.77. Ten days after germination normal thylakoid membrane structure was formed both in grana and stroma lamellae. They were arranged orderly as in the chloroplasts of other higher plants; the Chl a/b ratio was 2.80. The following conclusions could be drawn from the above mentioned results: 1) There was a negative correlation between the degree of stacking of the grana thylakoid membranes and the Chl a/b ratio. This statement further proved that the membranes stacking might mainly be induced by LHCII. 2) Development of the grana thylakoid membranes within chloroplasts from sacred lotus plumule followed that of the stroma thylakoid membranes, and the tendency of changes of their Chl 2/b ratio being from the lowest to the highest and then to normal were quite different from those of other higher plants. The chloroplasts iri the latter plants contain long parallel stacks of nonappressed primary thylakoids at second step, and the changes of their ratio of Chl a/b tend to be from the highest to the lowest and then to normal. There are indications that sacred lotus plumule might employ a distinctive developing pathway. This provides an important basis for Nelumbo to possess an unique position in phylogeny of Angiospermae.  相似文献   

16.
Membrane-bound ribosomes of chloroplasts, isolated from pea seedlings during grana formation, can be partially liberated by 0.5 M KCl and 0.001 M puromycin. In case of mature chloroplasts, after the completion of grana formation process these agents are inefficient, and liberation of ribosomes and polyribosomes may be achieved only after solubilization of thylakoid membranes by 1% Triton X-100. Electron microscopic study of the heavy membrane fraction of young chloroplasts reveals electron-transparent membranes, containing rings and discs of thylakoids with a diameter of about 2 mum. These rings are liberated together with ribosomes under the action of 0.5 M KCl; Triton X-100 liberates equally-sized annular polyribosomes. The rings detected in chloroplast membranes at early stages of development are regarded as structures, precursor grana thylakoids, and the annular polyribosomes included into them as immediate participants of thylakoid morphogenesis.  相似文献   

17.
Summary Changes of membrane thickness and loculi were studied after red (650 nm) and far-red (707 nm) light in thylakoids of maize with different stacking and pigment compositions.The most intensive shrinkage of thylakoid membranes occurred in grana and under red light. Membranes of stroma thylakoids responded more to far-red light. Bundle sheath thylakoid membranes did not change in thickness. Loculi decreased in all types of thylakoids under both, red and far-red light. Thylakoids obtained from a -carotenic mutant exhibited a contrasting response: swelling under red light followed by photodestruction. Changes under far-red light were similar to that of normal stroma thylakoids.The data on normal chloroplasts show that the light induced shrinkage of membranes and the decrease of loculi are coupled to a different degree in various kinds of thylakoids; that the thylakoid flattening can be correlated with the Photosystem content of the membranes; and that two kinds of single thylakoids (stroma lamellae and bundle sheath lamellae) are different in molecular structure and function.Data on carotenoid deficient chloroplasts indicate a photooxidative destruction of the thylakoids by Photosystem 2 that occurs in the absence of normal carotenoids.  相似文献   

18.
The grana margins of plant thylakoid membranes   总被引:1,自引:0,他引:1  
Plant thylakoid membranes contain three structurally distinct domains: the planar appressed membranes of the grana; the planar non-appressed stroma thylakoids; and the highly curved, non-appressed margins of the grana. Evidence is presented to suggest that the grana margins form a significant structural domain, which has hitherto been neglected. If indeed the grana margins contain some of the cytochrome b/f complex, photosystem (PS) I complex and ATP synthase, they form a third functional domain of the laterally heterogeneous continuous thylakoid membrane network. The consequences of grana margins containing complexes are explored with respect to linear electron transport under light-saturating and light-limiting conditions, non-cyclic vs cyclic photophorylation, and the regulation of light energy distribution to both PS I and PS II.  相似文献   

19.
Long-term acclimation of shade versus sun plants modulates the composition, function and structural organization of the architecture of the thylakoid membrane network. Significantly, these changes in the macroscopic structural organization of shade and sun plant chloroplasts during long-term acclimation are also mimicked following rapid transitions in irradiance: reversible ultrastructural changes in the entire thylakoid membrane network increase the number of grana per chloroplast, but decrease the number of stacked thylakoids per granum in seconds to minutes in leaves. It is proposed that these dynamic changes depend on reversible macro-reorganization of some light-harvesting complex IIb and photosystem II supracomplexes within the plant thylakoid network owing to differential phosphorylation cycles and other biochemical changes known to ensure flexibility in photosynthetic function in vivo. Some lingering grana enigmas remain: elucidation of the mechanisms involved in the dynamic architecture of the thylakoid membrane network under fluctuating irradiance and its implications for function merit extensive further studies.  相似文献   

20.
We studied the involvement of pigment-protein complexes of photosystems (PS) in the development and spatial arrangement of thylakoids in chloroplasts of pea (Pisum sativum L.) leaves. The initial line (cv. Torsdag) and its mutants, chlorotica 2004 displaying primary disturbances in the PSI reaction centers and chlorotica 2014 containing only 50% of chlorophyll and, as a sequence, the reduced amount of all pigment-protein complexes. A proportional decrease in the content of PSI and PSII complexes in the chlorotica 2014 mutant resulted in a partial reduction of the whole chloroplast membrane system, whereas grana and stroma thylakoid regions were well developed. In contrast, a loss of only 20% of chlorophyll and destruction of PSI complexes in the chlorotica 2004 mutant by 50% resulted in the destruction of stroma thylakoid regions and disturbed longitudinal thylakoid and grana orientation. It was concluded that protein-protein interactions in pigment-protein complexes played a key role in the structure of thylakoid membranes and their longitudinal orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号