首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The G-protein coupled receptor (GPCR) superfamily is one of the largest classes of molecules involved in signal transduction across the plasma membrane. The serotonin(1A) receptor is a representative member of the GPCR superfamily and serves as an important target in the development of therapeutic agents for neuropsychiatric disorders such as anxiety and depression. In the context of the pharmacological relevance of the serotonin(1A) receptor, the membrane organization and dynamics of this receptor in the cellular environment assume relevance. We have highlighted results, obtained from fluorescence microscopy-based approaches, related to domain organization and dynamics of the serotonin(1A) receptor. A fraction of serotonin(1A) receptors displays detergent insolubility, monitored using green fluorescent protein, that increases upon depletion of membrane cholesterol. Fluorescence recovery after photobleaching measurements with varying bleach spot sizes show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells. Taken together, we conclude that the serotonin(1A) receptor exhibits dynamic confinement in the cellular plasma membranes. Progress in understanding GPCR organization and dynamics would result in better insight into our overall understanding of GPCR function in health and disease.  相似文献   

2.
3.
Expression of serotonin receptors in bone   总被引:6,自引:0,他引:6  
The 5-hydroxytryptamine (5-HT) receptors 5-HT(2A), 5-HT(2B), and 5-HT(2C) belong to a subfamily of serotonin receptors. Amino acid and mRNA sequences of these receptors have been published for several species including man. The 5-HT(2) receptors have been reported to act on nervous, muscle, and endothelial tissues. Here we report the presence of 5-HT(2B) receptor in fetal chicken bone cells. 5-HT(2B) receptor mRNA expression was demonstrated in osteocytes, osteoblasts, and periosteal fibroblasts, a population containing osteoblast precursor cells. Pharmacological studies using several agonists and antagonists showed that occupancy of the 5-HT(2B) receptor stimulates the proliferation of periosteal fibroblasts. Activity of the 5-HT(2A) receptor could however not be excluded. mRNA for both receptors was shown to be equally present in adult mouse osteoblasts. Osteocytes, which showed the highest expression of 5-HT(2B) receptor mRNA in chicken, and to a lesser extent osteoblasts, are considered to be mechanosensor cells involved in the adaptation of bone to its mechanical usage. Nitric oxide is one of the signaling molecules that is released upon mechanical stimulation of osteocytes and osteoblasts. The serotonin analog alpha-methyl-5-HT, which preferentially binds to 5-HT(2) receptors, decreased nitric oxide release by mechanically stimulated mouse osteoblasts. These results demonstrate that serotonin is involved in bone metabolism and its mechanoregulation.  相似文献   

4.
5.
Tryptophan 2,3-dioxygenase (TDO) is expressed in endometrium and catabolizes tryptophan, a precursor in the biosynthesis of serotonin. Tryptophan metabolism is an important mechanism for regulation of serotonin levels. Preimplantation mouse embryos are known to express serotonin receptors, specifically the 5-HT1D and 5-HT7 serotonin receptor subtypes. Here we demonstrate that Hoxa10 regulates endometrial TDO expression and improves embryo viability through increased serotonin production. Transfection of pcDNA-Hoxa10 to the murine uterus increased total TDO expression. In vitro, epithelial cell TDO expression was decreased after transfection with Hoxa10. Decreased glandular TDO in response to HOXA10 may augment serotonin production by increasing tryptophan availability. Conversely, stromal TDO expression increased with constitutive Hoxa10 expression. In mice, epithelial serotonin was increased in response to constitutive expression of Hoxa10. Embryo quality was impaired after treatment with Hoxa10 antisense. Blockade of serotonin receptors 1D and 7 also resulted in impaired embryo development, indicating an essential role for Hoxa10 induction of TDO and subsequent serotonin production in embryo development. Transfection of pcDNA-TDO also decreased the number of T cells in the endometrial stroma. We have shown a novel mechanism by which HOXA10 regulates endometrial TDO expression. In the endometrial stroma, HOXA10 increases TDO mRNA, which may increase tryptophan catabolism, allowing for immune tolerance at the time of embryo implantation. In endometrial glands, HOXA10 decreases TDO mRNA leading to increased serotonin that in turn acts to promote normal embryo development.  相似文献   

6.
A number of recently solved crystal structures of G-protein coupled receptors reveal the presence of closely associated cholesterol molecules in the receptor structure. We have previously shown the requirement of membrane cholesterol in the organization, dynamics and function of the serotonin(1A) receptor, a representative G-protein coupled receptor. In this work, we explored the role of membrane cholesterol in the stability of the human serotonin(1A) receptor. Analysis of sensitivity of the receptor to thermal deactivation, pH, and proteolytic digestion in control, cholesterol-depleted and cholesterol-enriched membranes comprehensively demonstrate that membrane cholesterol stabilizes the serotonin(1A) receptor. We conclude that these results could have potential implications in future efforts toward crystallizing the receptor.  相似文献   

7.
Unfertilized eggs and early embryos of the sea urchin Arbacia lixula incubated for 60 min in a medium containing the antagonists of prenervous serotonin, i.e. inmecarb (21 microM) or imipramine (40 microM), bind up to 5 microM of these drugs per 1 ml of cells. At high cell concentrations (more than 10,000 eggs or embryos per 1 ml), this binding is not followed by inhibition of cleavage divisions or by increase in the sensitivity to cytostatic effects of these drugs, which is taken as an indication that this binding is a nonreceptive one. The decrease in concentration of eggs or embryos does not affect total binding of the drugs, although their antiserotonin effects become evident indicating the existence of the receptor sites of binding. In experiments with 3H-imipramine, two binding pools were found (Bmax being correspondingly equal to about 20 and 0.75 microM/ml of embryos; the values of Kd amount to 200 and 15 microM). One of them is a nonreceptive pool, whereas the other presumably coincides with receptor binding sites of prenervous serotonin antagonists.  相似文献   

8.
9.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. We have monitored the ligand binding of the human serotonin1A receptor stably expressed in CHO cells (termed CHO-5-HT1AR) following treatment with sphingomyelinase (SMase), an enzyme that specifically catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine. Our results show, for the first time, that the specific ligand binding activity of the serotonin1A receptor in membranes isolated from CHO-5-HT1AR cells is increased upon sphingomyelinase treatment. Saturation binding analysis reveals increase in binding affinity of the receptor under these conditions. This is accompanied by a reduction in membrane order, as monitored by fluorescence anisotropy of the membrane probe 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in intact cells. These results represent the first report on the effect of sphingomyelinase treatment on the ligand binding activity of this important neurotransmitter receptor.  相似文献   

10.
The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum > duodenum > jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band ( approximately 70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [(3)H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na(+) and Cl(-); 2) inhibited ( approximately 50%) by the neuronal SERT inhibitor, fluoxetine (10 microM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells.  相似文献   

11.
Previously we have shown that at traumatic shock in rats the force of contraction of isolated aorta in response to angiotensin II, vasopressin, endothelin 1, or norepinephrine is decreased. On the contrary, vasoconstriction caused by serotonin is increased. A possible reason of the alterations of neuroendocrine regulation of vascular tone in shock may be a change in the expression of the receptors of these agonists in blood vessels. In the present study, using real-time PCR, we demonstrated that a day after injury the contents of mRNA encoding receptors V1A for vasopressin, ETA for endothelin 1, and AT1 for angiotensin II are not changed in aorta. There was a slight increase of the serotonin 5-HT2A receptor mRNA (36 ± 16%; p = 0.41). The level of the 5-HT2B receptor mRNA in aorta, initially low (2% of the content of the mRNA of receptors 5-HT2A), after the injury increased 15.8 ± 0.3 times (p < 0.01). However, at traumatic shock there was no contraction of aorta in response to 5-HT2B receptor agonist BW723C86, while vasodilation of the isolated aorta preconstricted with norepinephrine in response to BW723C86 was similar to that of the vessel isolated from control rats. The data obtained suggest that the observed 5-HT2B receptor overexpression is not related to the increased serotonin-induced vasoconstriction and might cause other vascular pathological changes at traumatic shock.  相似文献   

12.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin(1A) receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin(1A) receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin(1A) receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin(1A) receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin(1A) receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients.  相似文献   

13.
Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain   总被引:4,自引:0,他引:4  
B J Hoffman  E Mezey 《FEBS letters》1989,247(2):453-462
  相似文献   

14.
The cDNA of RDC4, a putative receptor of the G protein-coupled receptor family, has been cloned by PCR methodology. The primary structure of this receptor showed homology with the serotonin 5-HT1A receptor. In this work, RDC4 mRNA has been injected in Y1 adrenal cells and Xenopus oocytes and RDC4 cDNA has been transfected transiently in cos-7 cells. In all these systems serotonin elicited a rise in cyclic AMP levels. Binding studies on membranes of the transfected cos-7 cells using [3H]-LSD showed a pattern of drug affinities consistent with the known properties of a 5-HT1D receptor. RDC4 therefore codes for a 5-HT1D receptor which in the studied systems is positively coupled to adenylate cyclase.  相似文献   

15.
We have used double-label in situ hybridization techniques to examine the cellular localization of GABAB receptor mRNA in relation to serotonin transporter mRNA and glutamic acid decarboxylase mRNA in the rat dorsal raphe, median raphe and raphe magnus nuclei. The degree of cellular co-localization of these markers notably varied among the different nuclei. In the dorsal raphe, cell bodies showing GABAB receptor mRNA were very abundant, the 85% being also labelled for serotonin transporter mRNA, and a low proportion (5%) showing glutamic acid decarboxylase mRNA. In the median raphe, the level of co-expression of GABAB receptor mRNA with serotonin transporter mRNA was significantly lower. Some cells were also identified that contained GABAB receptor mRNA in the absence of either one of the other mRNA species studied. Our results support the presence of GABAB receptors in serotonergic as well as GABAergic neurones in the dorsal and median raphe, providing the anatomical basis for the reported dual inhibitory/disinhibitory effect of the GABAB agonist baclofen on serotonergic function.  相似文献   

16.
Platelets actively accumulate virtually all plasma serotonin within their dense granules. As a readily isolated, homogeneous cell type, platelets have served as a model for serotonin uptake into neurological tissue, in addition to defining the role of serotonin in hemostasis. The number of serotonin receptor types on the platelet membrane and the function of these receptors has not been conclusively demonstrated. The presence of different receptor types that may be altered or lost in disease or upon aging (in vitro storage or in vivo) could have significant physiological effects on platelet function. This report demonstrates that at least two receptor types are present on freshly prepared human platelets. However, after 3 to 4 days of storage in autologous plasma, the low-affinity, high-capacity serotonin receptor appears to be lost. This phenomenon probably accounts for some of the discrepancies reported in the literature. The high-affinity receptor present in both freshly isolated and stored platelets binds about 9 x 10(3) serotonin molecules per platelet. Binding can be completely blocked by imipramine; however, some passive diffusion appears to occur even at the low level of extracellular serotonin concentrations employed in these studies (nanomolar range). The influx of serotonin into platelets appears to be poorly reversible, even in reserpine-treated cells, where the extravesicular cytoplasmic concentration would be high. The loss of the low-affinity serotonin receptor type reported in these studies may be directly or indirectly associated with the reduced responsiveness observed in stored platelets.  相似文献   

17.
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.  相似文献   

18.
Serotonin is a neurotransmitter present throughout animal kingdom that controls a number of crucial functions in different taxa. In this study we document the role of serotonin in a bdelloid rotifer, Macrotrachela quadricornifera. Following life table experimental protocol, we recorded age-specific fecundity and survival rates of cohorts that received WAY 100135 maleate, a selective antagonist of the serotonin receptor 1A. The antagonist was provided from the age of 4 days (age at first reproduction) until death to one cohort group, and during 15 days to another group. Both groups were cultivated regularly, and their life history traits were recorded. Treated rotifers continued to produce eggs, but most eggs were never oviposited and eventually ruptured the mother’s body wall. The retained eggs, being parthenogenetic began embryogenesis and some could hatch inside the mother’s body cavity (pseudocoel). When WAY was suspended, most treated rotifers oviposited all their eggs. About 75% of these eggs developed, but development was 1–2 days longer than in controls. Most newborns reached sexual maturity, although their maturity was delayed as well. Eggs produced after WAY suspension hatched as much as the controls (~100%). WAY possibly did not affect egg production, but prevented regular oviposition. Nevertheless, viability was reduced and development took longer during WAY treatment. Results suggest that in bdelloid rotifers serotonin is involved in the control of egg laying and development, among other features, as it does in most animals, from nematodes to chordates.  相似文献   

19.
Serotonin1A receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin and 10-methyl-11-hydroxyaporphine, inhibited electrical stimulation-induced contraction of the guinea-pig ileum. These agonists also inhibited the pressor and tachycardiac responses to low frequency (0.25 Hz) but not to high frequency (2.0 Hz) electrical stimulation of the sympathetic nervous system in pithed rats. Serotonin1B receptor agonist RU 24969 inhibited pressor and tachycardiac responses to both low and high frequencies of stimulation in pithed rats. In the cat nictitating membrane, serotonin1A receptor agonists did not alter contractions elicited by electrical stimulation (0.1-3.0 Hz). Serotonin not only contracted the cat nictitating membrane but also facilitated contractile responses to low frequency (0.1-1.0 Hz) stimulation. The contractile effect of serotonin in the cat nictitating membrane was blunted by bretylium, methysergide, and ketanserin, but not by metoclopramide. The facilitatory effect of serotonin was antagonized by methysergide, but not by ketanserin, pindolol, propranolol, or metoclopramide. These results suggest that serotonin1A receptors modulate autonomic neurotransmission in the guinea-pig ileum and pithed rats, but not in the cat nictitating membrane. Serotonin contracts the cat nictitating mebrane via serotonin2 subtypes, while facilitating stimulated contractile responses through the serotonin1-like receptors.  相似文献   

20.
Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive, behavioral, and developmental processes. The serotonin(1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors and is the most extensively studied among the serotonin receptors. Several aspects of serotonin(1A) receptor biology such as cellular distribution and signal transduction characteristics are technically difficult to address in living cells on account of the inability to optically track these receptors with fluorescence-based techniques. We describe here the characterization of the serotonin(1A) receptor tagged to the enhanced yellow fluorescent protein (EYFP) stably expressed in Chinese hamster ovary (CHO) cells. These receptors were found to be essentially similar to the native receptor in pharmacological assays and can therefore be used to reliably explore aspects of receptor biology such as cellular distribution and dynamics on account of their intrinsic fluorescent properties. Analysis of the cell surface dynamics of these receptors by fluorescence recovery after photobleaching (FRAP) experiments has provided novel insight into the molecular mechanism of signal transduction of serotonin(1A) receptors in living cells. Interestingly, addition of pharmacologically well-characterized ligands or activators of G-proteins altered the diffusion characteristics of the receptor in a manner consistent with the G-protein activation model. These results demonstrate, for the first time, that membrane dynamics of this receptor is modulated in a G-protein-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号