首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determinants of antibiotic resistance have been cloned from four antibiotic-producing streptomycetes into Streptomyces lividans. Biochemical analyses of resistant clones revealed the presence of enzymes that had previously been characterized as likely resistance determinants in the producing organisms. These included: 23S rRNA methylases from S. azureus and S. erythreus, which confer resistance to thiostrepton and erythromycin, respectively; viomycin phosphotransferase from S. vinaceus; and aminoglycoside phosphotransferase and acetyltransferase from the neomycin producer S. fradiae. In general, the levels of antibiotic resistance of the clones were similar to those of the producing organisms. Although the two aminoglycoside-modifying enzymes from S. fradiae could independently confer only low-level resistance to neomycin, the presence of both enzymes in the same strain resulted in a level of resistance comparable with that of the producing organism.  相似文献   

2.
Recent studies of prokaryotic ribosomes have dramatically increased our knowledge of ribosomal RNA (rRNA) structure, functional centers, and their interactions with antibiotics. However, much less is known about how rRNA function differs between prokaryotic and eukaryotic ribosomes. The core decoding sites are identical in yeast and human 18S rRNAs, suggesting that insights obtained in studies with yeast rRNA mutants can provide information about ribosome function in both species. In this study, we examined the importance of key nucleotides of the 18S rRNA decoding site on ribosome function and aminoglycoside susceptibility in Saccharomyces cerevisiae cells expressing homogeneous populations of mutant ribosomes. We found that residues G577, A1755, and A1756 (corresponding to Escherichia coli residues G530, A1492, and A1493, respectively) are essential for cell viability. We also found that residue G1645 (A1408 in E. coli) and A1754 (G1491 in E. coli) both make significant and distinct contributions to aminoglycoside resistance. Furthermore, we found that mutations at these residues do not alter the basal level of translational accuracy, but influence both paromomycin-induced misreading of sense codons and readthrough of stop codons. This study represents the most comprehensive mutational analysis of the eukaryotic decoding site to date, and suggests that many fundamental features of decoding site function are conserved between prokaryotes and eukaryotes.  相似文献   

3.
Microbial products are surveyed that have an immunoregulatory activity, both from the realm of low-molar-mass compounds and from the group of naturally occurring polymers. The data include in most cases the producer organism or source, a brief chemical characteristic and biological activity. Various groups of substances are compared, the drawbacks attendant on their acquisition and application are pointed out and their advantageous properties are specified. Translated by K. Sigler  相似文献   

4.
5.
Summary A strain of Escherichia coli containing a conditional drug dependent arginine auxotrophy was used to select for the loss of plasmid and/or transposon encoded kanamycin (Km) or streptomycin (Sm) resistance determinants. Because these determinants inactivate the corresponding drug thus elminating drug suppression, loss of the drug-resistance determinants was selected directly by growth on minimal media plates containing sub-lethal dosages of the drug. This method was used to select loss of Km or Sm resistance determinants due to loss of plasmids, transposition from plasmid to chromosome, and eduction of transposons from the chromosome. Drug suppression was compared to phage PRD1 resistance in selecting for loss of plasmid vehicles during transposition and was found to be 10-1,000 times more efficient. Eighty percent of the eductant clones had undergone imprecise eductions suggesting that this method may be useful in selecting stable deletion mutants. An antibiotic suppressible strain of Pseudomonas stutzeri was obtained implying a broad utility of this selection procedure.  相似文献   

6.
Activity of oxidation-reduction enzymes such as succinate dehydrogenase, peroxidase and catalase was studied in staphylococci isolated from healthy persons and patients as well as from the air and implements of medical institutions. The isolates were resistant either to antibiotics or to chloramine B or to the both. The results showed that development of resistance to antibiotics and chloramine B in the staphylococci was accompanied by a decrease in the activity of succinate dehydrogenase, peroxidase and catalase. In the strains resistant only to chloramine B the activity of the enzymes was practically at the same level as in the strains resistant only to antibiotics. In the strains resistant to both antibiotics and chloramine B, the activity of succinate dehydrogenase, peroxidase and catalase did not practically differ from that in the strains resistant either to antibiotics or to chloramine B.  相似文献   

7.
Aims: This study examined vancomycin-susceptible Enterococcus (VSE) from deli salads for streptogramin resistance and presence of cpd, agg and gelE genes. Methods and Results: Fifteen VSE from retail salads were isolated for identification and antimicrobial susceptibility testing by MicroScan, Etest and agar diffusion. Clinical vancomycin-resistant Enterococcus (n = 32) and animal VSE (n = 17) were included for comparative purposes. Multiplex PCR was used to detect the following genes: agg, gelE, cpd, vatD, vatE and sodA. Results showed fewer streptogramin-susceptible Enterococcus faecium isolated from salad (1/6, 17%) and animals (6/10, 60%) than from clinical (26/29, 90%) sources. A low level of erythromycin susceptibility was detected among salad (2/6, 33%) and animal (3/10, 30%) Ent. faecium isolates. Food and animal VSE demonstrated similarities in antimicrobial resistance profiles. All Enterococcus faecalis carried one or more of the selected genes cpd (40%), gelE (33%) and agg (27%). The vatD or vatE genes were not detected in any of the isolates. Conclusions: Experiments demonstrated that streptogramin resistance and virulence genes agg, cpd and gelE are present in enterococci isolated from deli salads. Significance and Impact of the Study: This study provides useful information regarding streptogramin resistance and virulence determinants in enterococci from foods associated with multi-component ingredients.  相似文献   

8.
Perchlorate-reducing microorganisms isolated from contaminated sites   总被引:6,自引:0,他引:6  
An extensive microcosm survey of perchlorate-contaminated sites was undertaken to assess the ability of indigenous microorganisms to degrade perchlorate. Samples from 12 contaminated sites and from one pristine location were analysed. Perchlorate was degraded to below detection limit in all electron donor-amended microcosms. Perchlorate-reducing microorganisms (PRMs) were numerous at most of these sites. Sixteen distinct PRMs were isolated that were phylogenetically related to either Dechloromonas in the Beta Proteobacteria (9/16 isolates) or to Azospirillum in the Alpha Proteobacteria (7/16 isolates). The majority of previously isolated PRMs are in the Beta Proteobacteria related to Dechloromonas or Dechlorosoma. This study indicates that PRMs of the genus Azospirillum may be more prevalent at contaminated sites than the current record of isolates suggests. Cell yields, electron donor to perchlorate ratios and maximum specific growth rates were similar among the isolates and similar to the few previously published values. However, the Monod half-saturation constants for perchlorate for the two Azospirillum isolates characterized were lower than those measured for other genera, suggesting that they may be more effective at low concentrations of perchlorate. These results extend the current understanding of PRMs from diverse environments and provide added confidence that microbial perchlorate reduction is ubiquitous, even at highly contaminated sites, and can be harnessed effectively for bioremediation.  相似文献   

9.
10.
Thirty mercury-resistant (Hg R) Bacillus strains were isolated from mercury-polluted sediment of Minamata Bay, Japan. Mercury resistance phenotypes were classified into broad-spectrum (resistant to inorganic Hg(2+) and organomercurials) and narrow-spectrum (resistant to inorganic Hg(2+) and sensitive to organomercurials) groups. Polymerase chain reaction (PCR) product sizes and the restriction nuclease site maps of mer operon regions from all broad-spectrum Hg R Bacillus were identical to that of Bacillus megaterium MB1. On the other hand, the PCR products of the targeted merP (extracellular mercury-binding protein gene) and merA (intracellular mercury reductase protein gene) regions from the narrow-spectrum Hg R Bacillus were generally smaller than those of the B. megaterium MB1 mer determinant. Diversity of gene structure configurations was also observed by restriction fragment length polymorphism (RFLP) profiles of the merA PCR products from the narrow-spectrum Hg R Bacillus. The genetic diversity of narrow-spectrum mer operons was greater than that of broad-spectrum ones.  相似文献   

11.
12.
13.
Identification of microorganisms isolated from jet fuel systems   总被引:5,自引:4,他引:1       下载免费PDF全文
Seventy-two samples from jet aircraft fuel systems were examined for microbial contamination. Ten contaminated samples yielded 43 microorganisms which were classified into nine genera of bacteria and three genera of fungi. The predominant types, comprising about 37% of the isolated cultures, were identified as Bacillus spp. The remaining cultures were distributed among 11 genera, each of which represented 2 to 9% of the total isolates. Four cultures could not be assigned to a genus on the basis of the diagnostic criteria used. Only five isolates, in the genera Pseudomonas and Hormodendrum (Cladosporium), grew abundantly in a mineral salts solution with JP-4 fuel as the sole source of carbon. The presence of fuel utilizers in a fuel system may be a better index to potential problems that have been correlated with microbial contamination than the presence of aerobic sporeforming bacilli.  相似文献   

14.
15.
Two phenol-degrading microorganisms were isolated from Amazonian rain forest soil samples after enrichment in the presence of phenol and a high salt concentration. The yeast Candida tropicalis and the bacterium Alcaligenes faecoalis were identified using several techniques, including staining, morphological observation and biochemical tests, fatty acid profiles and 16S/18S rRNA sequencing. Both isolates, A. faecalis and C. tropicalis, were used in phenol degradation assays, with Rhodococcus erythropolis as a reference phenol-degrading bacterium, and compared to microbial populations from wastewater samples collected from phenol-contaminated environments. C. tropicalis tolerated higher concentrations of phenol and salt (16 mM and 15%, respectively) than A. faecalis (12 mM and 5.6%). The yeast also tolerated a wider pH range (3-9) during phenol degradation than A. faecalis (pH 7-9). Phenol degradation was repressed in C. tropicalis by acetate and glucose, but not by lactate. Glucose and acetate had little effect, while lactate stimulated phenol degradation in A. faecalis. To our knowledge, these soils had never been contaminated with man-made phenolic compounds and this is the first report of phenol-degrading microorganisms from Amazonian forest soil samples. The results support the idea that natural uncontaminated environments contain sufficient genetic diversity to make them valid choices for the isolation of microorganisms useful in bioremediation.  相似文献   

16.
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.  相似文献   

17.
Wright E  Serpersu EH 《Biochemistry》2006,45(34):10243-10250
One of the most commonly occurring aminoglycoside resistance enzymes is aminoglycoside 2'-O-nucleotidyltransferase [ANT(2')]. In the present study molecular determinants of affinity and specificity for aminoglycoside binding to this enzyme are investigated using isothermal titration calorimetry (ITC). Binding of aminoglycosides is enthalpically driven accompanied by negative entropy changes. The presence of metal-nucleotide increases the affinity for all but one of the aminoglycosides studied but has no effect on specificity. The substituents at positions 1, 2', and 6' are important determinants of substrate specificity. An amino group at these positions leads to greater affinity. No correlation is observed between the change in affinity and enthalpy. At the 2' position greater affinity results from a more negative enthalpy for an aminoglycoside containing an amino rather than a hydroxyl at that position. At the 6' position the greater affinity for an aminoglycoside containing an amino substituent results from a less disfavorable entropic contribution. The thermodynamic basis for the change in affinity at position 1 could not be determined because of the weak binding of one of the aminoglycoside substrates, amikacin. The effect of increasing osmotic stress on affinity was used to determine that a net release of approximately four water molecules occurs when tobramycin binds to ANT(2'). No measurable net change in the number of bound water molecules is observed when neomycin binds the enzyme. Data acquired in this work provide the rationale for the ability of ANT(2') to confer resistance against kanamycins but not neomycins.  相似文献   

18.
19.
20.
Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号