首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Eicosapentaenoic acid (EPA) is one of the major dietary polyunsaturated fatty acids and induces apoptosis in several cancer cells. In this study, the EPA induced lipid peroxidation and response of antioxidative enzymes have been investigated in rat pheochromocytoma PC12 cells to elucidate the mechanisms of apoptosis induced by the polyunsaturated fatty acid EPA. We have analyzed superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and glutathione (GSH) contents in PC12 cells after exposure to different concentrations of EPA. Lipid peroxidation was shown to increase in the presence of EPA as an indication of the oxidative damage. Lipid peroxidation was enhanced by EPA in a dose-dependent manner, and the loss of cell viability was partially reversed by vitamin E. In the case of antioxidant enzyme activities, SOD and GPX activities and GSH contents increased significantly at 50 μmol/L EPA and were respectively 2.41-fold (p < 0.01), 3.49-fold (p < 0.05), and 1.43-fold (p < 0.05) higher than controls. The CAT activity at 10 μmol/L had the highest value and was increased by 25.83% (p < 0.05) compared to control. The results suggest that in PC12 cells the mechanism of apoptosis induced by EPA may be partly due to lipid peroxidation.  相似文献   

2.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

3.
Dietary content of phytohormones may potentially influence metabolic processes in animal cells. This study therefore aimed to investigate the effect of two plant growth regulators homobrassinolide (HB) and gibberellic acid (GBA) on the antioxidant defense status and lipid peroxidation level in the tissues of normal and streptozotocin- induced diabetic rats. Normal and diabetic rats (Albino –wistar strain) were administered 50μg HB and GBA intradermally each day for seven days and their tissue and blood levels of malondialdehyde (MDA), 4-hydroxy-2-nonenol (4-HNE), reduced glutathione (GSH) content and catalase (CAT) activity were determined. Subchronic treatment of rats with HB reduced lipid perioxidation and elevated antioxidant defense whereas GBA caused enhancement of lipid peroxidation and reduction of antioxidant defense in treated animals compared to the control rats.  相似文献   

4.
Zinc,ethanol, and lipid peroxidation in adult and fetal rats   总被引:1,自引:0,他引:1  
Studies were performed on adult and fetal rats receiving either a zinc-deficient (<0.5 ppm) diet and/or ethanol (20%) throughout pregnancy. Liver zinc levels were depressed in fetuses exposed toin utero zinc deficiency, but brain zinc levels were unchanged. Ethanol had no effect on the concentration of zinc in the several fetal and adult tissues studies. Lipid peroxidation, as measured by endogenous levels of malondialdehyde (MDA) increased following food restriction, zinc improverishment, and alcoholism in adult and fetal livers, but not in fetal brains. Generally, levels of MDA were highest when both zinc deficiency and the ingestion of alcohol occurred concurrently. Glutathione (GSH) was depressed by zinc restriction in several adult and fetal tissues, but not in the fetal brain. Ethanol alone had no effect on GSH levels. The activity of the enzyme glutathione peroxidase (GSH-Px) was not changed in either organism by alcohol or zinc deficiency. Overall, the data point to increased lipid peroxidation in maternal and fetal rat tissues following zinc depletion and/or treatment with alcohol and draw attention to the apparent vulnerability of the fetal liver toin utero alcoholism. By contrast, the fetal brain seems to be especially resistant to alcohol and zinc-related lipoperoxidation. An association is suggested between the increased lipoperoxidation accompanying zinc deficiency and reduced levels of GSH, but this does not appear to relate to changes in the activity of GSH-Px. A similar relationship is not evident with respect to the increased levels of MDA in fetal and adult livers following chronic alcohol intoxication. A possible basis for the zinc-GSH interaction is discussed.  相似文献   

5.
The in-vivo effects of alloxan on protein oxidation and lipid peroxidation, as well as on proteasome and antioxidant enzyme activities in liver and kidney of copper-loaded and iron-loaded rats, were studied. In control animals, a single alloxan dose (120 mg/kg, i.p.) increased blood-glucose concentration at the 24th hr and 48th hr and, especially, on the 5th day. For these periods of alloxan action, no changes in lipid peroxidation and antioxidant enzyme activities were found; only a slight increase of carbonyl content and strong increase of trypsin-like proteasome activity in rat liver on the 5th day was observed. Five days after alloxan injection, the blood-glucose concentration in iron-pretreated rats was similar to that of the controls. However, it was significantly lower in copper-pretreated animals; hence, insulin-mimetic action of copper might be suggested. The lower proteasome activity, measured in liver of copper-pretreated diabetic rats is probably due to a potential copper-chelating ability of alloxan. The present results showed that the action of alloxan was different in copper-and iron-pretreated rats. Analogous studies, using pretreatment with other metals, would contribute to a further elucidation of the role of different metals in diabetes development, especially in regions with environmental metal contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号