首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The sulfur-regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which encode sulfur-catabolic enzymes and two major regulatory genes which govern their expression. The positive-acting cys-3 regulatory gene is required to turn on the expression of the sulfur-related enzymes, whereas the other regulatory gene, scon, acts in a negative fashion to repress the synthesis of the same set of enzymes. Expression of the cys-3 regulatory gene was found to be controlled by scon and by sulfur availability. The nucleotide sequence of the cys-3 gene was determined and can be translated to yield a protein of molecular weight 25,892 which displays significant homology with the oncogene protein Fos, yeast GCN4 protein, and sea urchin histone H1. Moreover, the putative cys-3 protein has a well-defined leucine zipper element plus an adjacent charged region which together may make up a DNA-binding site. A cys-3 mutant and a cys-3 temperature-sensitive mutant lead to substitutions of glutamine for basic amino acids within the charged region and thus may alter DNA-binding properties of the cys-3 protein.  相似文献   

4.
G Jarai  G A Marzluf 《Biochemistry》1991,30(19):4768-4773
Uptake of inorganic sulfate in Neurospora crassa is governed by the sulfur regulatory circuit and is under the control of positively and negatively acting regulatory genes. Two genetically and biochemically distinct systems are responsible for the uptake of sulfate from the environment. One of these, sulfate permease II, encoded by the cys-14 gene, functions primarily in mycelia. A defined region of the CYS-14 protein was highly expressed in Escherichia coli and purified. Anti-CYS-14 antibody was produced and used to detect the CYS-14 protein in N. crassa extracts. The CYS-14 protein has an approximate molecular weight of 95K, in agreement with its calculated size based on its predicted amino acid sequence. The steady-state level of the CYS-14 protein is highly regulated in wild-type mycelia and constitutive in an scon-1 mutant, whereas no CYS-14 protein could be detected in a cys-3 mutant. Following the accumulation of the cys-14 mRNA, that reaches its maximum in about 6 h, the CYS-14 protein accumulates to a maximum level in about 8 h after derepression. During conditions of sulfur repression, the CYS-14 protein turns over with a half-life of approximately 2 h. The CYS-14 protein appears to be localized in the plasma membrane, suggesting that it functions as a sulfate ion transporter.  相似文献   

5.
cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.  相似文献   

6.
A group of enzymes of sulfur metabolism (arylsulfatase, cholinesulfatase, and a number of others) are normally repressed in Neurospora crassa by an abundant supply of a "favored" sulfur source such as methionine or inorganic sulfate. A mutant called scon(c) was isolated in which the formation of each of these enzymes is largely or completely nonrepressible. The structural genes for three of these enzymes have been mapped; scon(c) is not linked to any of them. It is also not linked to cys-3, another gene which is involved in control of the same group of enzymes. Two alleles of the structural gene for arylsulfatase [ars(+) and ars(UFC-220)] produce electrophoretically distinguishable forms of arylsulfatase. Heterokaryons with the constitution scon(c) ars(+) + scon(+)ars(UFC-220) were prepared. These heterokaryons produce both forms of arylsulfatase under conditions of sulfur limitation, but produce only the wild-type (ars(+)) form under conditions of sulfur abundance. When the alleles of ars and scon are in the opposite relationship, only the ars(UFC-220) form of arylsulfatase can be detected under conditions of sulfur abundance. Thus the effect of the scon(c) mutation seems to be limited to its own nucleus. The implications of these findings are discussed.  相似文献   

7.
8.
9.
The regulatory gene cys-3+ controls the synthesis of a number of enzymes involved in sulfur metabolism. cys-3 mutants show a multiple loss of enzymes in different pathways of sulfur metabolism. The cys-3+ gene was isolated by transformation of an aro-9 qa-2 cys-3 inl strain with a clone bank followed by screening with the "sib selection" method. The library used (pRAL1) contained inserts of Sau3a partial digest fragments of about 9 kilobases as well as the Neurospora qa-2+ gene. Double selection for qa-2+ and cys-3+ function was carried out. The transformants obtained with the isolated cys-3+ clone show recovery of the enzyme activities associated with the cys-3 mutation (e.g., arylsulfatase and sulfate permease). Restriction fragment length polymorphism experiments confirmed the identity of the clone, mRNA studies with Northern blots show that the expression of the cys-3+ gene is inducible. In contrast to cys-3+, the cys-3 (P22) mutant gene was not expressed at a higher level under sulfur-derepressed conditions.  相似文献   

10.
cys-3, the positive-acting master sulfur regulatory gene of Neurospora crassa, turns on the expression of an entire set of unlinked structural genes which encode sulfur-catabolic enzymes. cys-3 encodes a protein of 236 amino acid residues and contains a potential bipartite DNA-binding domain which consists of a leucine zipper and an adjacent highly basic region. Gel band mobility shift and DNA footprint experiments were used to demonstrate that the CYS3 protein, expressed in Escherichia coli, binds to three distinct sites in the 5' upstream DNA of cys-14, the structural gene for sulfate permease II. The CYS3 protein also binds to one distinct sequence element upstream of the cys-3 gene itself, which suggests an autoregulatory role for this protein. Two mutant CYS3 proteins, altered in the basic region of the DNA-binding domain, failed to bind to either the cys-14 or the cys-3 upstream recognition elements.  相似文献   

11.
J S Ketter  G Jarai  Y H Fu  G A Marzluf 《Biochemistry》1991,30(7):1780-1787
The complete nucleotide sequence of the cys-14 gene which encodes sulfate permease II, a member of the sulfur regulatory circuit, is presented. The cys-14 gene contains four introns with consensus splice site sequences and is transcribed from four closely spaced initiation sites located approximately 20 bp upstream of the ATG initiation codon. The translated CYS14 protein is composed of 781 amino acids with a molecular weight of 87,037 and contains 12 potential hydrophobic membrane-spanning domains. cys-4 mRNA was found to turn over with a half-life of approximately 15 min, which presumably contributes to the regulation of sulfate permease II function. The cys-14 gene is highly expressed, but only in cells subject to sulfur limitation, and is turned on by the positive-acting CYS3 sulfur regulatory protein. Results are presented which show that CYS3 protein binds with higher affinity to DNA fragments which contain two or three tandem copies of a binding site sequence. Analyses of binding site specificity via mutated binding site elements showed that different regions of the partially symmetrical CYS3 binding site are important for recognition by the CYS3 regulatory protein.  相似文献   

12.
13.
Mutants of Neurospora resistant to chromate were selected and all were found to map at a single genetic locus designated as cys-13. The chromate-resistant mutants grow at a wild-type rate on minimal media but are partially deficient in the transport of inorganic sulfate, especially during the conidial stage. An unlinked mutant, cys-14, is sensitive to chromate but transports sulfate during the mycelial stage at only 25% of the wild-type rate; cys-14 also grows at a fully wild-type rate on minimal media. The double-mutant strain, cys-13;cys-14, cannot utilize inorganic sulfate for growth and completely lacks the capacity to transport this anion. The only biochemical lesion that has been detected for the double-mutant strain is its loss in capacity for sulfate transport. Neurospora appears to possess two distinct sulfate permease species encoded by separate genetic loci. The transport system (permease I) encoded by cys-13 predominates in the conidial stage and is replaced by sulfate permease II, encoded by the cys-14 locus, during outgrowth into the mycelial phase. The relationship of these new mutants to cys-3, a regulatory gene that appears to control their expression, is discussed.  相似文献   

14.
15.
16.
The synthesis of aryl sulfatase, choline-O-sulfate permease, and two distinct sulfate permeases are repressed by methionine, but the activity of these enzymes is not subject to feedback inhibition. The permease species, but not aryl sulfatase, are also regulated by dynamic turnover, displaying a functional half-life of approximately 2 hr. The rate of turnover of these permeases is not influenced by the presence of the end product, methionine. Development of sulfate permease activity occurs only by de novo synthesis which requires both a lifting of methionine repression and a functional cys-3 product. The turnover system for sulfate permease is not present in dormant conidia but appears to be synthesized relatively rapidly during germination. Preexisting conidial sulfate permease is lost by turnover during germination and outgrowth into the mycelial phase, during which both permease species are synthesized anew, although the high affinity system contributes most of the total activity in growing mycelia.  相似文献   

17.
In industrial fermentations, Penicillium chrysogenum uses sulfate as the source of sulfur for the biosynthesis of penicillin. By a PCR-based approach, two genes, sutA and sutB, whose encoded products belong to the SulP superfamily of sulfate permeases were isolated. Transformation of a sulfate uptake-negative sB3 mutant of Aspergillus nidulans with the sutB gene completely restored sulfate uptake activity. The sutA gene did not complement the A. nidulans sB3 mutation, even when expressed under control of the sutB promoter. Expression of both sutA and sutB in P. chrysogenum is induced by growth under sulfur starvation conditions. However, sutA is expressed to a much lower level than is sutB. Disruption of sutB resulted in a loss of sulfate uptake ability. Overall, the results show that SutB is the major sulfate permease involved in sulfate uptake by P. chrysogenum.  相似文献   

18.
The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway.  相似文献   

19.
Neurospora crassa can use choline-O-sulfate as its sole sulfur source; the utilization of this compound involves its entry followed by intracellular hydrolysis. Neurospora possesses a transport system for the uptake of choline-O-sulfate which is specific for the sulfate ester and does not transport, nor is it inhibited by, either choline or inorganic sulfate. Mutant strains of Neurospora that are unable to transport or grow on inorganic sulfate can, nevertheless, utilize choline-O-sulfate for growth and transport the intact organic sulfate at a normal rate. Methionine, which represses a number of enzymes of sulfur anabolism, also represses the synthesis of the specific permease for choline-O-sulfate. A regulatory gene, cys-3, which controls the synthesis of choline sulfatase, aryl sulfatase, and several other related enzymes, also regulates the synthesis of the choline sulfate permease. Evidence is presented that the activity of choline sulfate permease is also regulated by a turnover process, the transport system having a functional half-life of approximately 3 hr.This investigation was supported by Public Health Service Grant 1 RO1 GM-18642 from the National Institute of General Medical Services.  相似文献   

20.
To investigate the changes in profiles of mRNA accumulation in response to sulfur deficiency, approximately 13 000 non-redundant Arabidopsis thaliana ESTs corresponding to approximately 9000 genes were analyzed using DNA macroarray. Three-week-old Arabidopsis plants grown on an agarose-solidified control medium were transferred to a sulfate-free medium and grown for 48 h for the analyses of sulfur-related metabolites and global gene expression profiles. Concentrations of sulfate, O-acetyl-l-serine (OAS), a positive regulator of sulfur deficiency-responsive genes, cysteine and glutathione (GSH) were determined. Plants transferred to sulfate-free media had reduced concentrations of sulfate and GSH, and OAS concentrations increased. Macroarray analysis revealed a number of genes, including APR2 and Sultr1;2, whose mRNA accumulation was increased by sulfur deficiency. Profiling was also carried out with plants treated with OAS under sulfate-sufficient condition. Scatter plot analysis revealed a positive correlation between the changes of expression levels by sulfur deficiency and by OAS treatment among the clones tested, suggesting that mRNA accumulation of a number of genes under sulfur deficiency is mainly controlled by OAS concentrations in tissues. It was also revealed that the sets of genes regulated under sulfur deficiency in leaves and roots differ considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号