首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis‐related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib‐resistant cell lines and data from a patient before and after resistance, we found that vemurafenib‐resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.  相似文献   

2.
Klinfelter syndrome was first described in adult males with gynecomastia, azoospermia and hypergonadotropic hypogonadism. Children with the 47, XXY karyotype demonstrate few clinical findings so Klinefelter syndrome is rarely diagnosed until adult life. Besides children who have been diagnosed during prenatal genetic testing, in infancy a male with 47, XXY (or variants: 46, XY-47, XXY; 48, XXXY; 48, XXYY, 49, XXXXY) may be found while undergoing evaluation of micropenis, hypospadias, cryptorchidism or facial anomalies. The older child may present with learning disabilities, behavior disorders or tall stature. At the time of puberty, the clinical picture includes small testes, gynecomastia and an eunuchoid habitus. Early diagnosis of Klinefelter syndrome must be performed since it has been demonstrated that early treatment with androgens may ameliorate many aspects of the clinical symptoms and attenuate or prevent behavioral and psychiatric disorders associated with 47, XXY males.  相似文献   

3.
In this short report, the genome-wide homologous recombination events were re-evaluated for classical swine fever virus (CSFV) strain AF407339. We challenged a previous study which suggested only one recombination event in AF407339 based on 25 CSFV genomes. Through our re-analysis on the 25 genomes in the previous study and the 41 genomes used in the present study, we argued that there should be possibly at least two clear recombination events happening in AF407339 through genome-wide scanning. The reasons for identifying only one recombination event in the previous study might be due to the limited number of available CSFV genome sequences at that time and the limited usage of detection methods. In contrast, as identified by most detection methods using all available CSFV genome sequences, two major recombination events were found at the starting and ending zones of the genome AF407339, respectively. The first one has two parents AF333000 (minor) and AY554397 (major) with beginning and ending breakpoints located at 19 and 607 nt of the genome respectively. The second one has two parents AF531433 (minor) and GQ902941 (major) with beginning and ending breakpoints at 8397 and 11,078 nt of the genome respectively. Phylogenetic incongruence analysis using neighbor-joining algorithm with 1000 bootstrapping replicates further supported the existence of these two recombination events. In addition, we also identified additional 18 recombination events on the available CSFV strains. Some of them may be trivial and can be ignored. In conclusion, CSFV might have relatively high frequency of homologous recombination events. Genome-wide scanning of identifying recombination events should utilize multiple detection methods so as to reduce the risk of misidentification.  相似文献   

4.
The effect of carbonnitrogenphosphorus (CNP) ratio of organic substrates on the regeneration of ammonium and phosphate was investigated by growing natural assemblages of freshwater bacteria in mineral media supplemented with the simple organic C, N, and P sources (glucose, asparagine, and sodium glycerophosphate, respectively) to give 25 different substrate CNP ratios. Both ammonium and phosphate were regenerated when CN and NP atomic ratios of organic substrates were 101 and 161, respectively. Only ammonium was regenerated when CN and NP ratios were 101 and 10–201, respectively. On the other hand, neither ammonium nor phosphate was regenerated when CN and NP ratios were 151 and 51, respectively. In no case was phosphate alone regenerated. As bacteria were able to alter widely the CNP ratio of their biomass, the growth yield of bacteria appeared primarily dependent on the substrate carbon concentration, irrespective of a wide variation in the substrate CNP ratio.  相似文献   

5.
6.
Integrin 5 1 and 2 1 are the major integrin receptors in human hepatocytes. However, in human hepatocellular carcinoma cells it was found that the expression of integrin 5 1 was decreased and another integrin 6 1 increased. In this study, the SMMC7721 human hepatocellular carcinoma cells cotransfected or singlely transfected with integrin 5 and/or 1 cDNAs were established, and designated 5 1.6-7721, 5.3-7721, and 1.6-7721 cell lines, respectively. Transfection with cDNAs of integrin 5 and 1 subunits resulted in the overexpression of each integrin and modified biological properties, including a slowed growth rate, changes in the cell cycle from 15.5% of control cells in the G2/M phase to 12.1%, 9.6% and 9.4% in 5.3-7721, 1.6-7721, 5 1.6-7721, respectively, and a decrease in the Cell Mitosis Index from 1.6 in controls to 0.96, 0.95, and 0.72, and 34%, 28% and 52% derived from colony forming ability, respectively. Tumorigenicity was also tested in nude mice with inoculation of cells subcutaneously. Tumor masses growing in nude mice following inoculation with 1.6-7721,and 5 1.6-7721 cells weighed only 52% or 31% those of control cells. These results indicated that deletion or low expression of integrin 5 1 may play an important role in the development of hepatocellular carcinoma. Therefore, induction of expression of the integrin 5 1 in malignant cells could be a potential means of treating hepatocellular carcinoma.  相似文献   

7.
Breast milk is the combination of bioactive compounds and microflora that promote newborn’s proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities—especially lactic acid bacteria (LAB)—are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.  相似文献   

8.
9.
Salmonella enterica serovar Typhimurium Sequence Type (ST) 313 is a major cause of invasive non-Typhoidal salmonellosis in sub-Saharan Africa. No animal reservoir has been identified, and it has been suggested that ST313 is adapted to humans and transmission may occur via person-to-person spread. Here, we show that ST313 cause severe invasive infection in chickens as well as humans. Oral infection of chickens with ST313 isolates D23580 and Q456 resulted in rapid infection of spleen and liver with all birds infected at these sites by 3 days post-infection. In contrast, the well-defined ST19 S. Typhimurium isolates F98 and 4/74 were slower to cause invasive disease. Both ST19 and ST313 caused hepatosplenomegaly, and this was most pronounced in the ST313-infected animals. At 3 and 7 days post-infection, colonization of the gastrointestinal tract was lower in birds infected with the ST313 isolates compared with ST19. Histological examination and expression of CXCL chemokines in the ileum showed that both D23580 (ST313) and 4/74 (ST19) strains caused increased CXCL expression at 3 days post-infection, and this was significantly higher in the ileum of D23580 vs 4/74 infected birds. At 7 days post-infection, reduced chemokine expression occurred in the ileum of the D23580 but not 4/74-infected birds. Histological analysis showed that D23580 infection resulted in rapid inflammation and pathology including villous flattening and fusion at 3 days post-infection, and subsequent resolution by 7 days. In contrast, 4/74 induced less inflammation and pathology at 3 days post-infection. The data presented demonstrate that ST313 is capable of causing invasive disease in a non-human host. The rapid invasive nature of infection in the chicken, coupled with lower gastrointestinal colonization, supports the hypothesis that ST313 is a distinct pathovariant of S. Typhimurium that has evolved to become a systemic pathogen that can cause disease in several hosts.  相似文献   

10.
Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.  相似文献   

11.
通过对近些年关于护理人员职业价值观研究的回顾与总结,对关键词“价值观”“工作价值观”“职业价值观”“护士职业价值观”“护士工作价值观”“护生价值观”“护生职业价值观”“护生工作价值观”“医学生职业价值观”“组织价值观”“道德价值观”进行网络检索。针对护理人员职业价值观内涵的总结与界定,形成构成护理人员职业价值观因素分析,提出研究护理人员职业价值观时代新意。  相似文献   

12.

Background

Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARδ agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice.

Methodology/Principal Findings

Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved.

Conclusions/Significance

The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.  相似文献   

13.
The major proteins of baboon milk were identified as -lactoglobulin (LG), -lactalbumin (LA), lysozyme, lactoferrin, casein, and albumin by immobiline isoelectric focusing, SDS-PAGE, immunoblotting of gels with rabbit antisera to human LA, lysozyme, and albumin and bovine LG and casein, and N-terminal sequencing of proteins blotted from gels. The first 30 N-terminal residues of baboon LG are identical to those of macaque (Macaca fasicularis) LG except for a (D/N) polymorphism at residue 2. The complete cDNA sequence and derived amino acid composition of LG were elucidated using RT-PCR amplification of poly(A)+ mRNA purified from lactating mammary gland. Baboon LG consists of 168 amino acid residues (Mr 20,750) and is the longest LG identified to date. LG and LA polymorphisms with three (A, B, and C) and two (A and B) variants, respectively, were detected by immobiline IEF, pH 4–6, of individual baboon milk samples at varying stages of lactation.  相似文献   

14.
15.
The combination of docetaxel, cisplatin, and S-1 (DCS) is a common chemotherapy regimen for patients with gastric cancer (GC). However, studies on long noncoding RNAs (lncRNAs) associated with the chemotherapeutic response to and prognosis after DCS remain lacking. The aim of the present study was to identify DCS mRNAs-lncRNAs associated with chemotherapy response and prognosis in GC patients. In the present study, we identified 548 lncRNAs associated with these 16 mRNAs in the TCGA and GSE31811 datasets. Eleven lncRNAs were used to construct a prognostic signature by least absolute shrinkage and selection operator (LASSO) regression. A model including the 11 lncRNAs (LINC02532, AC007277.1, AC005324.4, AL512506.1, AC068790.7, AC022509.2, AC113139.1, LINC00106, AC005165.1, MIR100HG, and UBE2R2-AS1) associated with the prognosis of GC was constructed. The signature was validated in the TCGA database, model comparison, and qRT-PCR experiments. The results showed that the risk signature was a more effective prognostic factor for GC patients. Furthermore, the results showed that this model can well predicting chemotherapy drug response and immune infiltration of GC patients. In addition, our experimental results indicated that lower expression levels of LINC00106 and UBE2R2-AS1 predicted worse drug resistance in AGS/DDP cells. The experimental results agreed with the predictions. Furthermore, knockdown of LINC00106 or UBE2R2-AS1 can significantly enhanced the proliferation and migration of GC AGS cells in vitro. In conclusion, a novel DCS therapy-related lncRNA signature may become a new strategy to predict chemotherapy response and prognosis in GC patients. LINC00106 and UBE2R2-AS1 may exhibit a tumor suppressive function in GC.  相似文献   

16.
17.
We have previously shown that Fhit tumor suppressor protein interacts with Hsp60 chaperone machinery and ferredoxin reductase (Fdxr) protein. Fhit-effector interactions are associated with a Fhit-dependent increase in Fdxr stability, followed by generation of reactive oxygen species and apoptosis induction under conditions of oxidative stress. To define Fhit structural features that affect interactions, downstream signaling, and biological outcomes, we used cancer cells expressing Fhit mutants with amino acid substitutions that alter enzymatic activity, enzyme substrate binding, or phosphorylation at tyrosine 114. Gastric cancer cell clones stably expressing mutants that do not bind substrate or cannot be phosphorylated showed decreased binding to Hsp60 and Fdxr and reduced mitochondrial localization. Expression of Fhit or mutants that bind interactor proteins results in oxidative damage and accumulation of cells in G2/M or sub-G1 fractions after peroxide treatment; noninteracting mutants are defective in these biological effects. Gastric cancer clones expressing noncomplexing Fhit mutants show reduction of Fhit tumor suppressor activity, confirming that substrate binding, interaction with heat shock proteins, mitochondrial localization, and interaction with Fdxr are important for Fhit tumor suppressor function.Fhit protein is a powerful tumor suppressor that is frequently lost or reduced in cancer cells because of rearrangement of the exquisitely DNA damage-sensitive fragile FHIT gene. Restoration of Fhit expression suppresses tumorigenicity of cancer cells of various types, and the ability to induce apoptosis in cancer cells in vitro is reduced by specific Fhit mutations (1, 2).Through studies of signal pathways affected by Fhit expression, by searches for Fhit protein effectors, and by in vitro analyses of Fhit activity, we and others have defined Fhit enzymatic activity in vitro (3), apoptotic activity in cells and tumors (46), and most recently identification of a Fhit protein complex that affects Fhit stability, mitochondrial localization, and interaction with ferredoxin reductase (Fdxr)5 (7). The complex includes Hsp60 and Hsp10 that mediate Fhit stability and may affect import into mitochondria, where Fhit interacts with Fdxr, which is responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin. Virally mediated Fhit restoration in Fhit-deficient cancer cells increases production of intracellular reactive oxygen species (ROS), followed by increased apoptosis of cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape apoptosis, likely carrying oxidative DNA damage that contributes to accumulation of mutations.The Fhit protein sequence, showing high homology to the histidine triad (HIT) family of proteins, suggested that the protein product would hydrolyze diadenosine tetraphosphate or diadenosine triphosphate (Ap3A) (8), and in vitro studies showed that Ap3A was cleaved into ADP and AMP by Fhit. The catalytic histidine triad within Fhit was essential for catalytic activity (3), and a Fhit mutant that substituted Asn for His at the central histidine (H96N mutant) was catalytically inactive, although it bound substrate well (3). Early tumor suppression studies showed that cancer cells stably transfected with wild type (WT) or H96N mutant Fhit were suppressed for tumor growth in nude mice. This suggested the hypothesis that the Fhit-substrate complex sends the tumor suppression signal (9, 10). To test this hypothesis, a series of FHIT alleles was designed to reduce substrate-binding and/or hydrolytic rates and was characterized by quantitative cell-death assays on cancer cells virally infected with each allele. The allele series covered defects as great as 100,000-fold in kcat and increases as large as 30-fold in Km. Mutants with 2–7-fold increases in Km had significantly reduced apoptotic indices and the mutant with a 30-fold increase in Km retained little apoptotic function. Thus, the proapoptotic function of Fhit, which is likely associated with tumor suppressor function, is limited by substrate binding and is unrelated to substrate hydrolysis (11).Fhit, a homodimeric protein of 147 amino acids, is a target of tyrosine phosphorylation by the Src family protein kinases, which can phosphorylate Tyr-114 of Fhit in vitro and in vivo (12). After co-expression of Fhit with the Elk tyrosine kinase in Escherichia coli to generate phosphorylated forms of Fhit, unphosphorylated, mono-, and diphosphorylated Fhit were purified, and enzyme kinetics studies showed that monophosphorylated Fhit exhibited monophasic kinetics with Km and kcat values ∼2- and ∼7-fold lower, respectively, than for unphosphorylated Fhit. Diphosphorylated Fhit exhibited biphasic kinetics; one site had Km and kcat values ∼2- and ∼140-fold lower, respectively, than for unphosphorylated Fhit; the second site had a Km ∼60-fold higher and a kcat ∼6-fold lower than for unphosphorylated Fhit (13). Thus, it was possible that the alterations in Km and kcat values for phosphorylated forms of Fhit might favor formation and lifetime of the Fhit-Ap3A complex and enhance tumor suppressor activity (see
Fhit forms
Kinetic parameters
% Sub-G1
Direct binding
Subcellular location
Co-IP in vivo
8-OHdG
Apoptosis
Tumor suppressor
Km (mm)kcat (s–1)A549MKN74Hsp60FdxrHsp60Fdxr
Fhit WT 1.6 +/– 0.19 2.7 +/– 0.95 43 24 Yes Yes Cyt & mito Yes Yes Yes Yes Yes
Catalyt mutants
   H96D Up 2-fold Down >2 × 104 29 NT NT NT Cyt & mito Yes Yes NT Yes NT
   H96N Up 2-fold Down >5 × 105 31 14.4 NT NT Cyt & mito Yes Yes Yes Yes Yes
Loop mutants
   Y114A Up 23-fold Down 2-fold 3.7 NT NT NT Cyt +/– +/– +/– No No
   Y114D NT NT 2.9 6 NT NT Cyt +/– +/– No –/+
   Y114E NT NT NT NT NT NT Cyt & mito –/+ –/+ No NT
   Y114F Up 5-fold Up 1.1-fold 11.5 3 NT NT Cyt & mito –/+ –/+ No No
   Y114W Up 5-fold Up 1.4-fold NT NT NT NT Cyt & mito –/+ NT NT
   del113–117 Up 10-fold Down 38-fold 5 NT NT NT NT NT NT No NT
Other mutants
   L25W Up 7-fold Down 4-fold 15 NT NT NT Cyt NT –/+
   I10W,L25W Up 32-fold Down 6-fold 11 NT NT NT NT NT NT NT NT NT
   F5W Up 3.3 fold NT NT 5 NT NT NT NT NT +/– No NT
Purified pFhit
   pFhit Down 0.4-fold Down 7-fold NA NA –/+ Yes NA NA NA NA NA NA
   ppFhit Down 0.4-fold Down > 100-fold NA NA –/+ Yes NA NA NA NA NA NA
Up 60-fold Down 6-fold
Open in a separate windowTo explore the in vivo importance of the Tyr-114 phosphorylation site and define Fhit-mediated signaling events, Semba et al. (14) compared the differential biological effects of Ad-FHIT WT and Ad-FHIT Tyr-114 mutant expression in human lung cancer cells. Caspase-dependent apoptosis was effectively induced only by WT Fhit protein. However, the biological significance of phosphorylation at Tyr-114 has been difficult to study because the endogenous phosphorylated forms have very short half-lives; activation of epidermal growth facto receptor family members induces Fhit phosphorylation by Src and proteasome degradation of phosphorylated Fhit (15).Although there are possible connections among the various pathways known to be altered in Fhit-deficient cells, apoptosis, DNA damage-response checkpoint activation, ROS production, and related biological effects of Fhit loss or overexpression, details of the pathway(s) leading from Fhit overexpression to cell death and tumor suppression have not been delineated. Now that a Fhit signaling complex has been identified, we set out to examine which structural features of Fhit protein might participate in individual steps of the pathway leading from Fhit overexpression through complex formation, subcellular localization, interaction with mitochondrial Fdxr, DNA damage induction, cell cycle changes, apoptosis, and ultimately tumor suppression. The underlying hypotheses were as follows: substrate-binding mutants would behave similarly to WT; nonsubstrate-binding mutants would be defective in some step of the pathway, perhaps complexing with heat shock proteins or Fdxr or perhaps induction of DNA damage; and Tyr-114 mutants, which also affect formation or stability of the enzyme-substrate complex, would also be defective in executing some step of the Fhit overexpression pathway to cell death. One goal was to identify specific mutants that exhibited deficiency in specific steps of the pathway, so that such mutants could be used to dissect each step in more detail. Using in vitro Fhit and Fhit-effector protein interactions, we aimed to determine the following: 1) which proteins of the complex interact directly with Fhit, and 2) the biological role of these interactions in vivo. Using cancer cells expressing exogenous WT and mutant Fhit proteins, we were able to examine the structural features of Fhit that affect the direct interaction with its effectors, participate in ROS production, and are necessary for tumor suppression activity.  相似文献   

18.
Focus on Metabolism: Posttranslational Protein Modifications in Plant Metabolism     
Giulia Friso  Klaas J. van Wijk 《Plant physiology》2015,169(3):1469-1487
Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play key roles in plants through their impact on signaling, gene expression, protein stability and interactions, and enzyme kinetics. Following a brief discussion of the experimental and bioinformatics challenges of PTM identification, localization, and quantification (occupancy), a concise overview is provided of the major PTMs and their (potential) functional consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into an understanding of plant metabolic regulation.The primary amino acid sequence of proteins is defined by the translated mRNA, often followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation. Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs) of specific amino acid residues. Proteins are directly responsible for the production of plant metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene expression, cell fate and development, structural support, transport, etc.). Many metabolic enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004), and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part because it requires measurements of input and output of the reactions, including flux through the enzyme or pathway. This Update will start out with a short overview on the major PTMs observed for each amino acid residue (PTMs, including determination of the localization within proteins (i.e. the specific residues) and occupancy. Challenges in dealing with multiple PTMs per protein and cross talk between PTMs will be briefly outlined. We then describe the major physiological PTMs observed in plants as well as PTMs that are nonenzymatically induced during sample preparation (PTMs, in particular for enzymes in primary metabolism (Calvin cycle, glycolysis, and respiration) and the C4 shuttle accommodating photosynthesis in C4 plants (PTMs observed in plants
Amino Acid ResidueObserved Physiological PTM in PlantsPTMs Caused by Sample Preparation
Ala (A)Not known
Arg (R)Methylation, carbonylation
Asn (N)Deamidation, N-linked gycosylationDeamidation
Asp (D)Phosphorylation (in two-component system)
Cys (C)Glutathionylation (SSG), disulfide bonded (S-S), sulfenylation (-SOH), sulfonylation (-SO3H), acylation, lipidation, acetylation, nitrosylation (SNO), methylation, palmitoylation, phosphorylation (rare)Propionamide
Glu (E)Carboxylation, methylationPyro-Glu
Gln (Q)DeamidationDeamidation, pyro-Glu
Gly (G)N-Myristoylation (N-terminal Gly residue)
His (H)Phosphorylation (infrequent)Oxidation
Ile (I)Not known
Leu (L)Not known
Lys (K)N-ε-Acetylation, methylation, hydroxylation, ubiquitination, sumoylation, deamination, O-glycosylation, carbamylation, carbonylation, formylation
Met (M)(De)formylation, excision (NME), (reversible) oxidation, sulfonation (-SO2), sulfoxation (-SO)Oxidation, 2-oxidation, formylation, carbamylation
Phe (F)Not known
Pro (P)CarbonylationOxidation
Ser (S)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc)Formylation
Thr (T)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc), carbonylationFormylation
Trp (W)Glycosylation (C-mannosylation)Oxidation
Tyr (Y)Phosphorylation, nitration
Val (V)Not known
Free NH2 of protein N terminiPreprotein processing, Met excision, formylation, pyro-Glu, N-myristoylation, N-acylation (i.e. palmitoylation), N-terminal α-amine acetylation, ubiquitinationFormylation (Met), pyro-Glu (Gln)
Open in a separate window

Table II.

Most significant and/or frequent PTMs observed in plants
Type of PTM (Reversible, Except if Marked with an Asterisk)Spontaneous (S; Nonenzymatic) or Enzymatic (E)Comment on Subcellular Location and Frequency
Phosphorylation (Ser, Thr, Tyr, His, Asp)EHis and Asp phosphorylation have low frequency
S-Nitrosylation (Cys) and nitration* (Tyr)S (RNS), but reversal is enzymatic for Cys by thioredoxinsThroughout the cell
Acetylation (N-terminal α-amine, Lys ε-amine)EIn mitochondria, very little N-terminal acetylation, but high Lys acetylation; Lys acetylation correlates to [acetyl-CoA]
Deamidation (Gln, Asn)S, but reversal of isoAsp is enzymatic by isoAsp methyltransferaseThroughout the cell
Lipidation (S-acetylation, N-meristoylation*, prenylation*; Cys, Gly, Lys, Trp, N terminal)ENot (or rarely) within plastids, mitochondria, peroxisomes
N-Linked glycosylation (Asp); O linked (Lys, Ser, Thr, Trp)EOnly proteins passing through the secretory system; O linked in the cell wall
Ubiquination (Lys, N terminal)ENot within plastids, mitochondria, peroxisomes
Sumoylation (Lys)ENot within plastids, mitochondria, peroxisomes
Carbonylation* (Pro, Lys, Arg, Thr)S (ROS)High levels in mitochondria and chloroplast
Methylation (Arg, Lys, N terminal)EHistones (nucleus) and chloroplasts; still underexplored
Glutathionylation (Cys)EHigh levels in chloroplasts
Oxidation (Met, Cys)S (ROS) and E (by PCOs; see Fig. 1B), but reversal is enzymatic by Met sulfoxide reductases, glutaredoxins, and thioredoxins, except if double oxidizedHigh levels in mitochondria and chloroplast
Peptidase* (cleavage peptidyl bond)EThroughout the cell
S-Guanylation (Cys)S (RNS)Rare; 8-nitro-cGMP is signaling molecule in guard cells
Formylation (Met)S, but deformylation is enzymatic by peptide deformylaseAll chloroplasts and mitochondria-encoded proteins are synthesized with initiating formylated Met
Open in a separate window

Table III.

Regulation by PTMs in plant metabolism and classic examples of well-studied enzymes and pathwaysMany of these enzymes also undergo allosteric regulation through cellular metabolites. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PRK, phosphoribulokinase.
ProcessEnzymesPTMs, Protein Modifiers, LocalizationReferences
Calvin-Benson cycle (chloroplasts)Many enzymesOxidoreduction of S-S bonds, reversible nitrosylation, glutathionylation; through ferredoxin/ferredoxin-thioredoxin reductase/thioredoxins (mostly f and m) and glutaredoxins; proteomics studies in Arabidopsis and C. reinhardtiiMichelet et al. (2013)
RubiscoMethylation, carbamylation, acetylation, N-terminal processing, oligomerization; classical studies in pea (Pisum sativum), spinach (Spinacia oleracea), and ArabidopsisHoutz and Portis (2003); Houtz et al. (2008)
GAPDH/CP12/PRK supercomplexDynamic heterooligomerization through reversible S-S bond formation controlled by thioredoxinsGraciet et al. (2004); Michelet et al. (2013); López-Calcagno et al. (2014)
GlycolysisCytosolic PEPCPhosphorylation (S, T), monoubiquitinationO’Leary et al. (2011)
PhotorespirationSeven enzymes are phosphorylatedPhosphorylation from meta-analysis of public phosphoproteomics data for Arabidopsis; located in chloroplasts, peroxisomes, mitochondriaHodges et al. (2013)
Maize glycerate kinaseRedox-regulated S-S bond; thioredoxin f; studied extensively in chloroplasts of C4 maizeBartsch et al. (2010)
Respiration (mitochondria)Potentially many enzymes, but functional/biochemical consequences are relatively unexploredRecent studies suggested PTMs for many tricarboxylic acid cycle enzymes, including Lys acetylation and thioredoxin-driven S-S formation; in particular, succinate dehydrogenase and fumarase are inactivated by thioredoxinsLázaro et al. (2013); Schmidtmann et al. (2014); Daloso et al. (2015)
PDHSer (de)phosphorylation by intrinsic kinase and phosphatase; ammonia and pyruvate control PDH kinase activity; see Figure 1BThelen et al. (2000); Tovar-Méndez et al. (2003)
C4 cycle (C3 and C4 homologs also involved in glycolysis and/or gluconeogenesis)Pyruvate orthophosphate dikinasePhosphorylation by pyruvate orthophosphate dikinase-RP, an S/T bifunctional kinase-phosphatase; in chloroplastsChastain et al. (2011); Chen et al. (2014)
PEPCPhosphorylation; allosteric regulation by malate and Glc-6-P; in cytosol in mesophyll cells in C4 species (e.g. Panicum maximum); see Figure 1AIzui et al. (2004); Bailey et al. (2007)
PEPC kinaseUbiquitination resulting in degradation (note also diurnal mRNA levels and linkage to activity level; very low protein level); in cytosol in mesophyll cells in C4 species (e.g. Flaveria spp. and maize)Agetsuma et al. (2005)
PEPC kinasePhosphorylation in cytosol in bundle sheath cellsBailey et al. (2007)
Starch metabolism (chloroplasts)ADP-Glc pyrophosphorylaseRedox-regulated disulfide bonds and dynamic oligomerization; thioredoxins; see Figure 1CGeigenberger et al. (2005); Geigenberger (2011)
Starch-branching enzyme IIPhosphorylation by Ca2+-dependent protein kinase; P-driven heterooligomerizationGrimaud et al. (2008); Tetlow and Emes (2014)
Suc metabolism (cytosol)SPS (synthesis of Suc)(De)phosphorylation; SPS kinase and SPS phosphatase; 14-3-3 proteins; cytosol (maize and others)Huber (2007)
Suc synthase (breakdown of Suc)Phosphorylation; Ca2+-dependent protein kinase; correlations to activity, localization, and turnoverDuncan and Huber (2007); Fedosejevs et al. (2014)
Photosynthetic electron transport (chloroplast thylakoid membranes)PSII core and light-harvesting complex proteins(De)phosphorylation by state-transition kinases (STN7/8) and PP2C phosphatases (PBCP and PPH1/TAP38)Pesaresi et al. (2011); Tikkanen et al. (2012); Rochaix (2014)
Nitrogen assimilationNitrate reductase(De)phosphorylation; 14-3-3 proteinsLillo et al. (2004); Huber (2007)
Open in a separate windowThere are many recent reviews focusing on specific PTMs in plant biology, many of which are cited in this Update. However, the last general review on plant PTMs is from 2010 (Ytterberg and Jensen, 2010); given the enormous progress in PTM research in plants over the last 5 years, a comprehensive overview is overdue. Finally, this Update does not review allosteric regulation by metabolites or other types of metabolic feedback and flux control, even if this is extremely important in the regulation of metabolism and (de)activation of enzymes. Recent reviews for specific pathways, such as isoprenoid metabolism (Kötting et al., 2010; Banerjee and Sharkey, 2014; Rodríguez-Concepción and Boronat, 2015), tetrapyrrole metabolism (Brzezowski et al., 2015), the Calvin-Benson cycle (Michelet et al., 2013), starch metabolism (Kötting et al., 2010; Geigenberger, 2011; Tetlow and Emes, 2014), and photorespiration (Hodges et al., 2013) provide more in-depth discussions of metabolic regulation through various posttranslational mechanisms. Many of the PTMs that have been discovered in the last decade through large-scale proteomics approaches have not yet been integrated in such pathway-specific reviews, because these data are not always easily accessible and because the biological significance of many PTMs is simply not yet understood. We hope that this Update will increase the general awareness of the existence of these PTM data sets, such that their biological significance can be tested and incorporated in metabolic pathways.  相似文献   

19.
Huntington's disease: Dancing in a dish     
Kejing Zhang  Fei Yi  Guang-Hui Liu  Juan Carlos Izpisua Belmonte 《Cell research》2012,22(12):1627-1630
In a recent landmark paper, the Huntington''s disease (HD) iPSC Consortium reports on the establishment and characterization of a panel of iPSC lines from HD patients, and more importantly, the successful modeling of HD in vitro. In the same issue of Cell Stem Cell, An et al. reports on the successful targeted gene correction of HD in human iPSCs. Both advances are exciting, provide new resources for current and future HD research, and uncover new challenges to better understand and, most importantly, treat this devastating disease in the near future.Modeling human diseases using induced pluripotent stem cells (iPSCs) has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. Combined with advanced gene correction technology, human iPSCs hold great promise to provide patient-specific and mutation-free cells for potential cell replacement therapy. Huntington''s disease (HD) is an autosomal dominant neurodegenerative disorder, which causes motor dysfunction, psychiatric disturbances and cognitive impairment1. HD is caused by an expanded cystosine adenine guanine (CAG) tri-nucleotide repeat encoding polyglutamine in the first exon of the Huntingtin (HTT) gene. To date, there is no effective therapy for preventing the onset or slowdown of this disorder. Preliminary clinical trials using fetal neural grafts had shown long-lasting functional benefits in patients2. Though only effective in limited cases, these results suggest that cell-based therapy could be a potential treatment if a reliable and consistent cell source is available. For this purpose, an alternative cell source to overcome the logistical and biological hurdles of this disease had been actively explored in the past decade. With recent advancement in human iPSCs technology, HD patient-specific iPSCs coupled with an efficient directed cell differentiation protocol offers hope for an unlimited supply of autologous cells. Since HD is a monogenic disease, with a very well-established correlation between the number of CAG repeats and the age of disease onset, it provides an ideal target for iPSC-based gene correction that will allow for the production of disease-free cells for potential autologous cell therapy, and at the same time provide a much needed, valuable platform to further study the pathogenesis of the disease3,4.This is in fact what has been recently accomplished in two reports published in Cell Stem Cell5,6. The HD iPSC Consortium reports on the generation of HD patient-specific iPSC lines that showed CAG-repeat-expansion-associated phenotypes5. The study from An et al.6 reports on the successful targeted correction of expanded CAG repeat in HD patient iPSCs and the reversion of disease phenotypes.In the study reported from the HD iPSC Consortium, the authors generated 14 iPSC lines from HD patients and controls (listed in Open in a separate window
CodeNumber of iPSC lineCAG repeatsHD typeAge of sample procuredReprogramming strategyPhenotype detected cell typeGene correction line availablePhenotypeReferences
HD 43139/43Adult onset HD44 yearsOSKM (lentivirus)iPSCsnoIncreased Iysosomal activity7
HD 44442/44Adult onset HD59 years2 lines:OSKM (lentivirus) 2 lines: OSK (lentivirus)iPSCsnoIncreased Iysosomal activity7
HD 50150Adult onset HDunknown (father)OSKM (retrovirus)AstrocytenoNeural differentiation normal, Vacuolation in astrocyte12
HD109-11109Juvenile HDunknown (daughter)OSKM (retrovirus)AstrocytenoSimilar to HD 50, more vacuolation in astrocyte12
HD 72172Juvenile HD20 yearsOSKM (retrovirus)NPCsyesElevated caspase activity; more vulnerable to cell death6,8,9
HD 60360Adult onset HD29 years2 lines:OSKMNL (lentivirus) 1 line: OSKM (episomal)NPCs, neuronsnoAltered cell adhesion, energetics, and electrophysiology; Increased cell death in long time neural differentiation5
HD109-21109Juvenile HD9 yearsOSKMNL (lentivirus)NPCs, neuronsnoSimilar to HD 60; higher risk to cell death in response to BDNF withdrawal5
HD1804180Juvenile HD6 years3 lines:OSKMNL (lentivirus) 1 line: OSKM (episomal)NPCs, neuronsnoSimilar to HD 60 and 109; Increased vulnerable to stress and toxicity5
Open in a separate windowHD, Huntington''s Disease; iPSC, induced pluripotent stem cell; NPC, neural progenitor cell; O, Oct4; S, Sox2; K, Klf4; M, Myc; N, Nanog; L, Lin28.Meanwhile, using a homologous recombination-based gene targeting strategy, An et al.6 reported on the successful correction of the CAG-repeat-expanded HTT allele in HD patient iPSCs. These corrected iPSCs shared the same genetic background as the disease iPSCs, thereby serving as non-biased controls for their uncorrected counterparts. By comparing gene expression profiles of corrected iPSCs versus disease iPSCs, An et al. found that the alterations of cadherin, TGF-β, and caspase-related pathways in HD were rescued in the non-expanded iPSCs. The authors further demonstrated that gene correction in HD iPSCs reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in NSCs. More importantly, when transplanted into a mouse model of HD, the corrected HD iPSC-derived NSCs could survive and differentiate into GABAergic neurons and DARPP-32-positive neurons in vivo.Taken together, these two studies present very significant advances for iPSC-based disease modeling of HD and provide a potential donor source for cell replacement therapy. Though exciting indeed, several important challenges remain unsolved.First, complete recapitulation of neuropathology phenotypes in the iPSC-based models in vitro remains a challenge in the field. As a neurodegenerative disease, pathologic development of HD usually takes several decades and may be influenced by several external factors. In the HD iPSC-based model, the derivation method, clonal discrepancy as well as the culture conditions may affect the manifestation of phenotypes. Indeed, in previously reported HD iPSC lines, only slight increases in caspase and lysosomal activity were observed7,8,9. Although in both reports of HD iPSCs, significant phenotypes in electrophysiology, energy metabolism and cell death were recorded, other typical HD-associated phenotypes such as oligomeric mutant HTT aggregation, formation of nuclear inclusions and preferential striatal degeneration were not observed.Second, it is still an open question whether neural cells derived from gene-corrected iPSCs are fully functional, that is, whether they may restore physiological functions after cell replacement therapy. Ma et al.10 have recently reported on a protocol to differentiate striatal projection neurons from human embryonic stem cells with a high efficiency. After transplantation, these cells survived, reconnected striatal circuitry, and restored motor function in a striatal neurodegenerative mouse model. In spite of these encouraging first attempts, further improvements of the methodology for the directed cell differentiation in vitro and cell transplantation in vivo are still needed.Third, HTT protein is ubiquitously expressed and functional in different tissue. It has been hypothesized that HD may also develop in a non-autonomous manner11. The current studies mainly focused on the phenotypes of HD iPSC-derived neurons. However, supporting cells such as astrocytes might also play direct or indirect roles in HD progression. Indeed, a vacuolation phenotype has been observed in HD iPSC-derived astrocytes12. Therefore, it will be interesting to expand the HD iPSC platform into other cell types with the goal to extend and uncover the various ethiopathological factors involved in HD.Finally, human iPSC models of monogenic disorders in general possess great potential for the mechanistic study of the disease. However, as is the case with many neuropsychiatric disorders, HD establishment and progression is linked to different genetic and epigenetic factors, including environmental change-induced epigenetic modification, multiple mutations, and genetic alternation in non-coding regions. To this end, although the successful generation of HD iPSCs as well as targeted gene correction would greatly facilitate the study of HD, a comprehensive understanding of HD pathogenesis will need to be achieved before trying to translate the recent results into the clinic.In summary, despite all of these open questions, the recent studies have uncovered the unlimited potential of iPSCs for modeling HD in vitro. These studies will promote and enhance HD research in various areas, including elucidation of HD cellular pathogenesis, development of HD-specific biomarkers, screening for small therapeutic molecules, and manipulation of HD iPSCs for stem cell replacement therapy, which together may ultimately fulfill the promise of using iPSCs as a tool for regenerative medicine and drug discovery for HD in the near future.  相似文献   

20.
Long Non-Coding RNA Profiling in Laryngeal Squamous Cell Carcinoma and Its Clinical Significance: Potential Biomarkers for LSCC     
Zhisen Shen  Qun Li  Hongxia Deng  Dakai Lu  Haojun Song  Junming Guo 《PloS one》2014,9(9)
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号