首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The need for urgent diagnoses has propelled the development of automated analyses that can be performed in a short time at reasonable cost. One such method is immunoaffinity capillary electrophoresis. This emerging hybrid technology employs two powerful techniques coupled on-line for the direct and rapid determination of analytes present in biological fluids. The first technique, immunoaffinity, is used for the selective extraction of a molecule present in a complex matrix, utilizing a microscale-format chamber affinity device. An analyte (affinity target) present in serum or urine is captured by an immobilized molecular recognition antibody molecule (affinity ligand) bound to a solid support constituent (glass beads or an appropriate porous structure) of a microchamber affinity device. The second technique, capillary electrophoresis, is used for the high-resolution analytical separation of the purified and concentrated affinity target material after elution from the microchamber affinity device. In this work, immunoaffinity capillary electrophoresis was developed for the identification and characterization of a single constituent of a complex matrix. Immunoreactive gonadotropin-releasing hormone was determined in serum and urine specimens derived from a normal individual and from a patient suffering from benign prostatic hyperplasia. Furthermore, the on-line immuno-separation system was coupled in tandem to mass spectrometry to obtain molecular mass information of the affinity isolated and CE separated neuropeptide. This hybrid immuno-analytical technology is simple, rapid, selective and sensitive. In addition, an attempt was also made to characterize other urinary constituents by CE–MS that may lead to marker activity in the urine of the diseased subject. The hyphenation of analytical techniques has proved valuable in enhancing their individual features. The future of bioanalysis using miniaturized affinity systems is discussed in this paper.  相似文献   

2.
Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies.  相似文献   

3.
Circulating Tumor Cells(CTC)have the potential to be used clinically as a diagnostic tool and a treatment tool in the fieldof oncology.As a diagnostic tool,CTC may be used to indicate the presence of a tumor before it is large enough to cause noticeablesymptoms.As a treatment tool,CTC isolated from patients may be used to test the efficacy of chemotherapy options topersonalize patient treatment.One way for tumors to spread is through metastasis via the circulatory system.CTC are able toexploit the natural leukocyte recruitment process that is initially mediated by rolling on transient selectin bonds.Our capturedevices take advantage of this naturally occurring recruitment step to isolate CTC from whole blood by flowing samples throughselectin and antibody-coated microtubes.Whole blood was spiked with a known concentration of labeled cancer cells and thenperfused through pre-coated microtubes.Microtubes were then rinsed to remove unbound cells and the number of labeled cellscaptured on the lumen was assessed.CTC were successfully captured from whole blood at a clinically relevant level on the orderof 10 cells per mL.Combination tubes with selectin and antibody coated surface exhibited higher capture rate than tubes coatedwith selectin alone or antibody alone.Additionally,CTC capture was demonstrated with the KG 1 a hematopoietic cell line andthe DU 145 epithelial cell line.Thus,the in vivo process of selectin-mediated CTC recruitment to distant vessel walls can be usedin vitro to target CTC to a tube lumen.The biomolecular coatings can also be used to capture CTC of hematopoietic andepithelial tumor origin and is demonstrated to sensitivities down to the order of 10 CTC per mL.In a related study aimed at reducing the blood borne metastatic cancer load,we have shown that cells captured to a surfacecan be neutralized by a receptor-mediated biochemical signal.In the proposed method we have shown that using a combinedselectin and TRAIL(TNF Related Apoptosis Inducing Ligand or Apo 2L)functionalized surface we are abl  相似文献   

4.
Microfluidic-based diagnostics for cervical cancer cells   总被引:2,自引:0,他引:2  
The use of biomarkers has facilitated the detection of specific tumor cells. However, the technology to apply these markers in a clinical setting has not kept pace with their increasing availability. In this project, we use an antibody-based microfluidics platform to recognize and capture cervical cancer cells. Because HPV-16 infection of cervical cells and up-regulation of alpha6-integrin cell surface receptors are correlated, we utilized alpha6-integrin as a capture antibody bound to the channel surface. Normal human glandular epithelial cells (HGEC), human cervical stromal cells (HCSC) and cervical cancer cells (HCCC) were suspended in PBS and flowed through the system. Greater than 30% of the cancer cells were captured while the capture of the normal cell types was less than 5%. The technique is sensitive and accurate. It is potentially useful in the detection of cervical cancer at all stages, as well as other of cancers with similar characteristics of cell surface antigen expression.  相似文献   

5.
Li C  Lee KH 《Analytical biochemistry》2004,333(2):381-388
In the context of proteomic research, affinity separations for the prefractionation of complex mixtures, such as cell lysates or human tissues, have become increasingly important. Microfluidic devices have shown significant potential to achieve fast analysis and low sample consumption. Here, we demonstrate the use of a microfluidic device to achieve affinity capture of albumin from human cerebrospinal fluid. Traditional photolithography and wet etching techniques were used to fabricate devices from borosilicate glass wafers. Monolithic porous polymer was prepared in a microfluidic channel by photopolymerization of glycidyl methacrylate and trimethylolpropane trimethacrylate. After derivatization with Cibacron-blue-3G-A, the modified polymer was used to achieve affinity capture of lysozyme and human albumin. Both fluorescence detection and matrix-assisted laser desorption ionization time of flight mass spectrometry were used to validate the results.  相似文献   

6.
Ligands can be captured by a surface target through either direct bulk diffusion or surface diffusion following reversible adsorption to the surface. We have solved a steady state boundary value problem for a perfect sink disk target in the surface, taking into account bulk and surface diffusion coefficients D and Ds and adsorption/desorption kinetic rate constants ka and kd at non-target regions. Solutions have been successfully found by numerical computation. The results show that the rate of capture from the surface depends non-linearly on Ds, D, ka, kd and geometrical dimensions. In particular, we demonstrate that not only is the non-target region equilibrium constant Keq (= ka/kd) important in determining the rate of capture from the surface, but so are the kinetic rate constants ka and kd separately. In all cases, the surface adsorption/diffusion combination enhances the total rate of capture. The results should be useful for predicting reaction rates of biological membrane bound receptor clusters and substrate-immobilized enzymes.  相似文献   

7.
Protein microarray technology, in which a large number of capture ligands are spatially arrayed at a high density, presents an attractive method for high-throughput proteomic analysis. Toward this end, we demonstrate the first cell-based protein detection in a microsystem, wherein Escherichia coli cells are genetically engineered to express the desired capture proteins on the membrane surface and are spatially arrayed as sensing elements in a microfluidic device. An E. coli clone expressing peptide ligands with high affinity and high specificity for target molecules was isolated a priori. Then these cells were electrokinetically immobilized on gold electrodes using dielectrophoresis, thus allowing each sensor element to be electrically addressable. Flow cytometry and subsequent fluorescence analysis verified the highly specific capture and detection of target molecules by the bacteria. Finally, through the coexpression of peptide-based capture ligands on the cell surface and fluorescent protein in the cytoplasm, we demonstrate an effective means of directly linking the fluorescence intensity to the density of capture ligands.  相似文献   

8.
High abundance proteins in serum and plasma (e.g., albumin) are routinely removed during proteomic sample processing as they can mask lower abundance proteins and peptides of biological/clinical interest. A common method of albumin depletion is based on immunoaffinity capture, and many immunoaffinity devices are designed for multiple uses. In this case, it is critical that the albumin captured on the affinity matrix is stripped from the column prior to regeneration of the matrix and processing of subsequent samples, to ensure no carryover and that maximal binding sites are available for subsequent samples. The current study examines the ability of a manufacturer's protocol to remove the proteins and peptides captured by an immunoaffinity spin column. The data presented in the current work illustrate the difficulty in completely removing albumin from the immunoaffinity device, and consequently, may explain the variability and decreased efficiency shown for this device in previous studies. In summary, the current data present important considerations for the implementation of multiple‐use immunoaffinity devices for processing subsequent clinical samples in a proteomic workflow.  相似文献   

9.
A new type of flaky affinity resin for capture of the target proteins was prepared to discuss its properties compared with those of a particulate affinity resin. The resin prepared had totally co-continuous structure (monolith) and was utilized in the shape of flake. The concentration of surface amino groups for immobilization of ligand was determined to be 22.3 micromol/ml. Immobilizations of ligand such as Sulfonamide, Ketoprofen, Captopril, or Methotrexate (MTX) on the affinity resin were quantitatively proceeded to afford fully covered (100%) affinity resins. Control of the immobilization rate of affinity resin using Sulfonamide or Ketoprofen was successfully achieved with the calculated immobilization rate. The flaked shape of affinity resin (100-400 microm) presumably simplified affinity experimental procedures and the affinity resin immobilizing Sulfonamide effectively captured one of the target proteins, CAII, without non-specifically bound proteins. The observed properties of the flaky affinity resin as well as ease in handling are really useful for capture of the target proteins of possible rare ligands.  相似文献   

10.
Current analysis of circulating tumor cells (CTCs) is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity). Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH). In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization.  相似文献   

11.
This report describes an integrated and modular microsystem providing rapid analyses of trace-level tryptic digests for proteomics applications. This microsystem includes an autosampler, a microfabricated device comprising a large channel (2.4 microl total volume), an array of separation channels, together with a low dead volume enabling the interface to nanoelectrospray mass spectrometry. The large channel of this microfluidic device provides a convenient platform to integrate C(18) reverse phase packing or other type of affinity media such as immobilized antibodies or immobilized metal affinity chromatography beads thus enabling affinity selection of target peptides prior to electrophoretic separation and mass spectrometry analyses on a quadrupole/time-of-flight instrument. Sequential injection, preconcentration, and separation of peptide standards and tryptic digests are achieved with a throughput of up to 12 samples/per h and a concentration detection limit of approximately 5 nM (25 fmol on chip). Replicate injections of peptide mixtures indicated that reproducibility of migration time was 1.2-1.8%, whereas relative standard deviation ranging from 9.2 to 11.8% are observed on peak heights. The application of this device for trace-level protein identification is demonstrated for two-dimensional gel spots obtained from extracts of human prostatic cancer cells (LNCap) using both peptide mass-fingerprint data base searching and on-line tandem mass spectrometry. Enrichment of target peptides prior to mass spectral analyses is achieved using c-myc-specific antibodies immobilized on protein G-Sepharose beads and facilitates the identification of antigenic peptides spiked at a level of 20 ng/ml in human plasma. Affinity selection is also demonstrated for gel-isolated protein bands where tryptic phosphopeptides are captured on immobilized metal affinity chromatography beads and subsequently separated and characterized on this microfluidic system.  相似文献   

12.
Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%–90.0%) and excellent linear performance (R2 = 0.8189–0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM− tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.  相似文献   

13.
The current study was undertaken to fabricate a small micro-electrode on-chip to rapidly detect and quantify human CD4(+) cells in a minimal volume of blood through impedance measurements made with simple electronics that could be battery operated implemented in a hand held device. The micro-electrode surface was non-covalently modified sequentially by incubation with solutions of protein G', human albumin, monoclonal mouse anti-human CD4, and mouse IgG. The anti-human CD4 antibody served as the recognition and capture molecule for CD4(+) cells present in human blood. The binding of these biomolecules to the micro-electrodes was verified by impedance and cyclic voltammetry measurements. An increase in impedance was detected for each layer of protein adsorbed onto the micro-electrode surface. This process was shown to be highly repeatable. Increased impedance was measured when CD4(+) cells were captured on the micro-electrode, and the impedance also increased as the number of captured cells increased. Fluorescence microscopy of captured cells immunolabeled with anti-human CD4, CD8, and CD19 antibodies, and the nuclear label DAPI, confirmed that only CD4(+) cells were captured. The results were highly dependent on the specimen preparation method used. We conclude that the on-chip capture system can efficiently quantify the number of CD4(+) cells.  相似文献   

14.
The identification of tumor related cell membrane protein targets is important in understanding tumor progression, the development of new diagnostic tools, and potentially for identifying new therapeutic targets. Here we present a novel strategy for identifying proteins that are altered in their expression levels in a diseased cell using cell specific aptamers. Using an intact viable B-cell Burkitt's lymphoma cell line (Ramos cells) as the target, we have selected aptamers that recognize cell membrane proteins with high affinity. Among the selected aptamers that showed different recognition patterns with different cell lines of leukemia, the aptamer TD05 showed binding with Ramos cells. By chemically modifying TD05 to covalently cross-link with its target on Ramos cells to capture and to enrich the target receptors using streptavidin coated magnetic beads followed by mass spectrometry, we were able to identify membrane bound immunoglobin heavy mu chain as the target for TD05 aptamer. Immunoglobin heavy mu chain is a major component of the B-cell antigen receptor, which is expressed in Burkitt's lymphoma cells. This study demonstrates that this two step strategy, the development of high quality aptamer probes and then the identification of their target proteins, can be used to discover new disease related potential markers and thus enhance tumor diagnosis and therapy. The aptamer based strategy will enable effective molecular elucidation of disease related biomarkers and other interesting molecules.  相似文献   

15.
Lu Z  Moraes C  Ye G  Simmons CA  Sun Y 《PloS one》2010,5(10):e13542
Integrating single-cell manipulation techniques in traditional and emerging biological culture systems is challenging. Microfabricated devices for single cell studies in particular often require cells to be spatially positioned at specific culture sites on the device surface. This paper presents a robotic micromanipulation system for pick-and-place positioning of single cells. By integrating computer vision and motion control algorithms, the system visually tracks a cell in real time and controls multiple positioning devices simultaneously to accurately pick up a single cell, transfer it to a desired substrate, and deposit it at a specified location. A traditional glass micropipette is used, and whole- and partial-cell aspiration techniques are investigated to manipulate single cells. Partially aspirating cells resulted in an operation speed of 15 seconds per cell and a 95% success rate. In contrast, the whole-cell aspiration method required 30 seconds per cell and achieved a success rate of 80%. The broad applicability of this robotic manipulation technique is demonstrated using multiple cell types on traditional substrates and on open-top microfabricated devices, without requiring modifications to device designs. Furthermore, we used this serial deposition process in conjunction with an established parallel cell manipulation technique to improve the efficiency of single cell capture from ~80% to 100%. Using a robotic micromanipulation system to position single cells on a substrate is demonstrated as an effective stand-alone or bolstering technology for single-cell studies, eliminating some of the drawbacks associated with standard single-cell handling and manipulation techniques.  相似文献   

16.
A quantitative hybridization assay termed "reversible target capture" is described. The technique is designed to extensively purify the target nucleic acid from crude cell lysates in about 1 h without phenol extraction. Simple, rapid methods are described that explain how each process in the assay is optimized. The procedure involves hybridizing the target nucleic acid in solution with a dA-tailed capture probe and a labeled probe. The capture probe-target-labeled probe "ternary complex" is then captured on magnetic beads containing oligo(dT). After the excess unhybridized labeled probe, cell debris, and other sample impurities are washed away, the intact ternary complex is further purified by chemical elution from the beads and recapture on fresh beads. The ternary complex is then eluted thermally and recaptured on a third set of beads or on poly(dT) filters. This triple capture method results in a detection limit of approximately 0.2 amol (100 fg) of target with 32P-labeled riboprobes. This is approximately 1000 times more sensitive than sandwich assays employing only a single capture step. The method is illustrated by detecting Listeria cells in the presence of heterologous bacteria. With three rounds of target capture, as few as six Listeria cells have been detected in the presence of 1.25 x 10(7) control cells.  相似文献   

17.
TNF alpha and TNF beta were compared regarding their binding to different types of target cells, cytotoxic/cytostatic activity against murine and human tumor cell lines as well as human capillary endothelial cells, their ability to induce differentiation in myeloid leukemia cell lines, and induction of hemorrhagic tumor necrosis and tumor regression as well as lethal toxicity in tumor-bearing mice. The results show considerable quantitative differences in the biological activity between TNF alpha and TNF beta depending on the type of target cell which has been used. TNF beta was 3 fold more cytotoxic than TNF alpha against murine L929 fibroblasts and 3-5 times more active concerning the induction of hemorrhagic tumor necrosis, complete tumor regression and more toxic in tumor-bearing mice. In contrast to this, TNF beta was markedly less cytotoxic against human capillary endothelial cells and the human mammary carcinoma cell line MCF7 and much less cytostatic against the human myeloid leukemia cell lines HL60 and U937. The lesser antiproliferative effect of TNF beta correlated with a lower ability for induction of differentiation in these cell lines. Competitive radioligand binding assays showed that TNF beta was about 4 fold more effective than TNF alpha in competing with 125I-labeled TNF alpha for the binding to murine L929 fibroblasts. But it was 15-20 times less effective in binding to the human MCF7 cells and the human myeloid leukemia cell lines HL60 and U937. This revealed that, at least for these targets, the differences in the biological activity between TNF alpha and TNF beta are due to different abilities for binding to the target cells. Possible mechanisms for these different binding abilities are discussed.  相似文献   

18.
A microfluidic structure is presented where selective capture of proteins in complex samples, followed by clean-up, enzymatic processing, and MALDI-MS sample preparation of peptides generated, can be performed. The structure uses an affinity column to capture the protein while all other components in the sample are disposed of. The protein of interest is then eluted from the affinity column and captured on a second column on which the enzymatic processing is performed. Salts and hydrophilic contaminants are then removed before the products from the enzymatic reaction are eluted together with a suitable MALDI matrix and the solvent evaporated in a designated MALDI target structure. All steps can be performed automatically in 54 parallel microstructures on a microfluidic compact disc. The process is demonstrated by the selective capture and tryptic digest of recombinant IgG molecules from samples containing other proteins: an excess of bovine serum albumin or spent cell culture media.  相似文献   

19.
Much work has been done to develop tumor-targeting antibodies by selecting a phage antibody library on cancer cell lines. However, when tumor cells are removed from their natural environment, they may undergo genetic and epigenetic changes yielding different surface antigens than those seen in actual cases of cancer. We developed a strategy that allows selection of phage antibodies against tumor cells in situ on both fresh frozen and paraffin-embedded tissues using laser capture microdissection. By restricting antibody selection to binders of internalizing epitopes, we generated a panel of phage antibodies that target clinically represented prostate cancer antigens. We identified ALCAM/MEMD/CD166, a newly discovered prostate cancer marker, as the target for one of the selected antibodies, demonstrating the effectiveness of our approach. We further conjugated two single chain Fv fragments to liposomes and demonstrated that these nanotargeting devices were efficiently delivered to the interior of prostate cancer cells. The ability to deliver payload intracellularly and to recognize tumor cells in situ makes these antibodies attractive candidates for the development of targeted cancer therapeutics.  相似文献   

20.
Monoclonal antibodies (mAb) specific to cell surface antigens overexpressed on cancer cells adsorbed to single-wall carbon nanotube (SWCNT) devices can bind to their antigens in a drop of buffer, resulting in a slight drop in conductance. Here we report detection of live breast cancer cells with a mAb-SWCNT device. We adsorbed mAb specific to insulin-like growth factor 1 receptor (IGF1R) onto interconnected SWCNT networks placed between lithographically patterned electrodes. Application of human BT474 breast cancer cells increased the conductance of the IGF1R-specific mAb-SWCNT devices by 3.0±0.1-fold, relative to nanotube devices with non specific mAb. Human MCF7 breast cancer cells, with greater IGF1R expression, increased the conductance by 8.0±0.2-fold, but R-cells lacking IGF1R did not. Receptor-specific mAb acted as specific nanoswitches that completed a circuit between the SWCNT and the cell surface receptors, elevating the device conductance. Such devices might detect circulating breast cancer cells in blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号