共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiangbin Ruan Wei Han Bin Yin Jiangang Yuan Boqin Qiang Wantao Ying Xiaohong Qian Xiaozhong Peng 《Proteomics》2015,15(15):2602-2617
Brain‐enriched miR‐128 is repressed in glioma cells, and could inhibit the proliferation of gliomas by targeting genes such as E2F3a and BMI1. To identify more targets of miR‐128 in glioblastoma multiforme, the pulse stable isotope labeling with amino acids in cell culture (pSILAC) technique was used to test its impact on whole protein synthesis in T98G glioma cells. We successfully identified 1897 proteins, of which 1459 proteins were quantified. Among them, 133 proteins were downregulated after the overexpression of miR‐128. Through predictions using various bioinformatics tools, 13 candidate target genes were chosen. A luciferase assay validated that 11 of 13 selected genes were potential targets of miR‐128, and a mutagenesis experiment confirmed CBFB, CORO1C, GLTP, HnRNPF, and TROVE2 as the target genes. Moreover, we observed that the expression of CORO1C, TROVE2, and HnRNPF were higher in glioma cell lines compared to normal brain tissues and presented a tendency toward downregulation after overexpression of miR‐128 in T98G cells. Furthermore, we have validated that CORO1C, TROVE2, and HnRNPF could inhibit glioma cell proliferation. In sum, our data showed that the integration of pSILAC and bioinformatics analysis was an efficient method for seeking the targets of miRNAs, and plentiful targets of miR‐128 were screened and laid the foundation for research into the miR‐128 regulation network. 相似文献
2.
Dennis Kjølhede Jeppesen Arkadiusz Nawrocki Steffen Grann Jensen Kasper Thorsen Bradley Whitehead Kenneth A. Howard Lars Dyrskjøt Torben Falck Ørntoft Martin R. Larsen Marie Stampe Ostenfeld 《Proteomics》2014,14(6):699-712
Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13‐ to 16‐fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial–mesenchymal transition, including increased abundance of vimentin and hepatoma‐derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process. 相似文献
3.
Kanzaki H Ito S Hanafusa H Jitsumori Y Tamaru S Shimizu K Ouchida M 《Proteomics》2011,11(17):3531-3539
4.
Therese Solstad Elisa Bjørgo Christian J. Koehler Margarita Strozynski Knut Martin Torgersen Kjetil Taskén Bernd Thiede 《Proteomics》2010,10(15):2758-2768
Several lines of evidence suggest that detergent‐resistant membranes (DRMs) (also known as lipid rafts and glycosphingolipid‐enriched microdomains) may have a role in signaling pathways of apoptosis. Here, we developed a method that combines DRMs isolation and methanol/chloroform extraction with stable isotope labeling with amino acids in cell culture‐based quantitative proteome analysis of DRMs from control and cisplatin‐induced apoptotic Jurkat T cells. This approach enabled us to enrich proteins with a pivotal role in cell signaling of which several were found with increased or decreased amounts in DRMs upon induction of apoptosis. Specifically, we show that three isoforms of protein kinase C (PKC) are regulated differently upon apoptosis. Although PKCα which belongs to the group of conventional PKCs is highly up‐regulated in DRMs, the levels of two novel PKCs, PKCη and PKCθ, are significantly reduced. These alterations/differences in PKC regulation are verified by immunoblotting and confocal microscopy. In addition, a specific enrichment of PKCα in apoptotic blebs and buds is shown. Furthermore, we observe an increased expression of ecto‐PKCα as a result of exposure to cisplatin using flow cytometry. Our results demonstrate that in‐depth proteomic analysis of DRMs provides a tool to study differential localization and regulation of signaling molecules important in health and disease. 相似文献
5.
Sandra Morandell Karin Grosstessner‐Hain Elisabeth Roitinger Otto Hudecz Thomas Lindhorst David Teis Oliver A. Wrulich Michael Mazanek Thomas Taus Florian Ueberall Karl Mechtler Lukas. A. Huber 《Proteomics》2010,10(10):2015-2025
Signaling networks regulate cellular responses to external stimuli through post‐translational modifications such as protein phosphorylation. Phosphoproteomics facilitate the large‐scale identification of kinase substrates. Yet, the characterization of critical connections within these networks and the identification of respective kinases remain the major analytical challenge. To address this problem, we present a novel approach for the identification of direct kinase substrates using chemical genetics in combination with quantitative phosphoproteomics. Quantitative identification of kinase substrates (QIKS) is a novel‐screening platform developed for the proteome‐wide substrate‐analysis of specific kinases. Here, we aimed to identify substrates of mitogen‐activated protein kinase/Erk kinase (Mek1), an essential kinase in the mitogen‐activated protein kinase cascade. An ATP analog‐sensitive mutant of Mek1 (Mek1‐as) was incubated with a cell extract from Mek1 deficient cells. Phosphorylated proteins were analyzed by LC‐MS/MS of IMAC‐enriched phosphopeptides, labeled differentially for relative quantification. The identification of extracellular regulated kinase 1/2 as the sole cytoplasmic substrates of MEK1 validates the applicability of this approach and suggests that QIKS could be used to identify substrates of a wide variety of kinases. 相似文献
6.
7.
Shufang Liang Afu Fu Qiang Zhang Minghai Tang Jin Zhou Yuquan Wei Lijuan Chen 《Proteomics》2010,10(7):1474-1483
Honokiol (HNK), a natural small molecular product, inhibited proliferation of HepG2 cells and exhibited anti‐tumor activity in nude mice. In this article, we applied a novel sensitive stable isotope labeling with amino acids in cell culture‐based quantitative proteomic method and a model of nude mice to investigate the correlation between HNK and the hotspot migration molecule Ras GTPase‐activating‐like protein (IQGAP1). The quantitative proteomic analysis showed that IQGAP1 was 0.53‐fold down‐regulated under 10 μg/mL HNK exposure for 24 h on HepG2 cells. Migration ability of HepG2 cells under HNK treatment was correlated with its expression level of IQGAP1. In addition, the biochemical validation on HepG2 cells and the tumor xenograft model further demonstrated that HNK decreased the expression level of IQGAP1 and its upstream proteins Cdc42/Rac1. These data supported that HNK can modulate cell adhesion and cell migration by acting on Cdc42/Rac1 signaling via IQGAP1 interactions with its upstream Cdc42/Rac1 proteins, which is a new molecular mechanism of HNK to exert its anti‐tumor activity. 相似文献
8.
9.
10.
The immune response to pathogens or injury relies on the concerted release of cytokines and proteins with biological activity important for host protection, host defense, and wound healing. Consequently, the secretome of immune cells provides a promising resource for discovery of specific molecular markers and targets for pharmacological intervention. Here, we employ label-free MS for unbiased, quantitative profiling of the human monocytic cell secretome under different proinflammatory stimuli. The quantitative secretome profiles reveal the highly stimulus-dependent cellular response and differential, specific secretion of more than 200 proteins, including important proinflammatory proteins and cytokines. 相似文献
11.
Tumor metastasis is usually a serious problem in tumor patients because of the lack of therapeutic approaches. A new compound, N-all-trans-retinoyl-L-proline (ATRP), has been developed and its metastasis inhibition activity has been studied. Low concentrations of ATRP have already been found to inhibit hepatocellular carcinoma cells (HCC) in a dose- and time-dependent manner by inducing the expression of p27(kip). We found that ATRP inhibited metastasis-associated behaviors in Hep3B cells, such as cell migration, invasion, collagen adhesion and gelatinase expression, more significantly than retinoic acid. Further, such inhibitory activities were observed in the regulation of cellular surface fucosylated epitope functions, such as binding of ulex europaeus lectin, expression of Lewis x, y and b, and activity of alpha1,3 fucosyltransferase. Hep3B cells pretreated with ATRP showed a significantly reduced incidence of experimental intrahepatic metastasis in nude mice. We conclude that ATRP is an alternative inhibitor and potential therapeutic agent for HCC metastasis with a different mechanism of action from ATRP. 相似文献
12.
13.
The last years have seen the emergence of many large-scale proteomics initiatives that have identified thousands of new protein interactions and macromolecular assemblies. However, unfortunately, only a few among the discovered complexes meet the high-quality standards required to be promptly used in structural studies. This has thus created an increasing gap between the number of known protein interactions and complexes and those for which a high-resolution 3-D structure is available. Here, we present and validate a computational strategy to distinguish those complexes found in high-throughput affinity purification experiments that will stand the best chances to successfully express, purify and crystallize with little further intervention. Our method suggests that there are some 50 complexes recently discovered in yeast that could readily enter the structural biology pipelines. 相似文献
14.
Early prediction of metastatic breast cancer is important for improvement of prognosis and survival rate. The present study aimed to identify secreted protein biomarkers for detection of invasive breast cancer. To this end, we performed a comparative proteomic analysis by a combination of 2DE and MALDI‐TOF MS analysis of conditioned media from invasive H‐Ras MCF10A human breast epithelial cells and noninvasive MCF10A and N‐Ras MCF10A cells. We identified a list of 25 proteins that were strongly detected in media of H‐Ras MCF10A and focused on annexin II, which was shown to be involved in cell motility. Invasive triple‐negative human breast carcinoma cells, Hs578T, and MDA‐MB‐231, showed increased levels of annexin II in media, demonstrating that secretion of annexin II correlated well with the invasive phenotype of cells. We demonstrated a crucial role of annexin II in breast cell invasion/migration and actin cytoskeleton reorganization required for filopodia formation. Annexin II levels in the plasma samples and breast cancer tissues of breast cancer patients were significantly higher than those of normal groups, providing a clinical relevance to our in vitro findings. Taken together, we identified annexin II as a novel secretory biomarker candidate for invasive breast cancer, especially estrogen receptor‐negative breast cancer. 相似文献
15.
Michael E. Feigin 《Experimental cell research》2009,315(4):707-716
The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression. 相似文献
16.
17.
18.
Chenlin Song Songcheng Zhu Chuanyue Wu Jiuhong Kang 《The Journal of biological chemistry》2013,288(39):28021-28033
Aberrant expression of histone deacetylases (HDACs) is associated with carcinogenesis. Some HDAC inhibitors are widely considered as promising anticancer therapeutics. A major obstacle for development of HDAC inhibitors as highly safe and effective anticancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scant. Here we report that the expression level of HDAC10 was significantly lower in patients exhibiting lymph node metastasis compared with that in patients lacking lymph node metastasis in human cervical squamous cell carcinoma. Forced expression of HDAC10 in cervical cancer cells significantly inhibited cell motility and invasiveness in vitro and metastasis in vivo. Mechanistically, HDAC10 suppresses expression of matrix metalloproteinase (MMP) 2 and 9 genes, which are known to be critical for cancer cell invasion and metastasis. At the molecular level, HDAC10 binds to MMP2 and -9 promoter regions, reduces the histone acetylation level, and inhibits the binding of RNA polymerase II to these regions. Furthermore, an HDAC10 mutant lacking histone deacetylase activity failed to mimic the functions of full-length protein. These results identify a critical role of HDAC10 in suppression of cervical cancer metastasis, underscoring the importance of developing isoform-specific HDAC inhibitors for treatment of certain cancer types such as cervical squamous cell carcinoma. 相似文献
19.
Saji M Vasko V Kada F Allbritton EH Burman KD Ringel MD 《Biochemical and biophysical research communications》2005,332(1):167-173
Nuclear Akt1 expression and Akt activation are common in cancer invasion. However, the mechanisms for this association and its causal role in invasion are uncertain. In an effort to identify potential mechanisms for regulating Akt subcellular localization, we analyzed the Akt gene sequences and identified a highly conserved leucine-rich potential nuclear export sequence (NES). Initial experiments demonstrated that leptomycin B induced nuclear Akt1 localization. Transient expression experiments demonstrated that, in comparison to wild-type Akt1, NES-mutated (AKT/NES) Akt1 has reduced interactions with CRM-1 and persistent nuclear localization. Subsequent stable transfection experiments in Akt1-/- fibroblasts confirmed that expression of AKT/NES resulted in persistent nuclear localization and activation1. Finally, stable expression of AKT/NES in Akt1-/- fibroblasts was sufficient to enhance cell migration in vitro. Thus, Akt1 contains a functional NES and mutation of the NES results in nuclear-predominant Akt1 activation that is sufficient to induce migration. 相似文献
20.
Shuvadeep Maity Trayambak Basak Ajay Bhat Namrata Bhasin Asmita Ghosh Shantanu Sengupta 《Proteomics》2014,14(15):1724-1736
Imbalance in protein homeostasis in specific subcellular organelles is alleviated through organelle‐specific stress response pathways. As a canonical example of stress activated pathway, accumulation of misfolded proteins in ER activates unfolded protein response (UPR) in almost all eukaryotic organisms. However, very little is known about the involvement of proteins of other organelles that help to maintain the cellular protein homeostasis during ER stress. In this study, using iTRAQ‐based LC–MS approach, we identified organelle enriched proteins that are differentially expressed in yeast (Saccharomyces cerevisiae) during ER stress in the absence of UPR sensor Ire1p. We have identified about 750 proteins from enriched organelle fraction in three independent iTRAQ experiments. Induction of ER stress resulted in the differential expression of 93 proteins in WT strains, 40 of which were found to be dependent on IRE1. Our study reveals a cross‐talk between ER‐ and mitochondrial proteostasis exemplified by an Ire1p‐dependent induction of Hsp60p, a mitochondrial chaperone. Thus, in this study, we show changes in protein levels in various organelles in response to ER stress. A large fraction of these changes were dependent on canonical UPR signalling through Ire1, highlighting the importance of interorganellar cross‐talk during stress. 相似文献