首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
DNA-induced increase in the alpha-helical content of C/EBP and GCN4   总被引:16,自引:0,他引:16  
Leucine zipper proteins comprise a recently identified class of DNA binding proteins that contain a bipartite structural motif consisting of a "leucine zipper" dimerization domain and a segment rich in basic residues responsible for DNA interaction. Protein fragments encompassing the zipper plus basic region domains (bZip) have previously been used to determine the conformational and dynamic properties of this motif. In the absence of DNA, the coiled-coil portion is alpha-helical and dimeric, whereas the basic region is flexible and partially disordered. Addition of DNA containing a specific recognition sequence induces a fully helical conformation in the basic regions of these fragments. However, the question remained whether the same conformational change would be observed in native bZip proteins where the basic regions might be stabilized in an alpha-helical conformation even in the absence of DNA, through interactions with portions of the protein not included in the bZip motif. We have now examined the DNA-induced conformational transition for an intact bZip protein, GCN4, and for the bZip fragment of C/EBP with two enhancers that are differentially symmetric. Our results are consistent with the induced helical fork model wherein the basic regions are largely flexible in the absence of DNA and become fully helical in the presence of the specific DNA recognition sequence.  相似文献   

4.
Basic region leucine zipper (bZip) proteins contain a bipartite DNA-binding motif consisting of a coiled-coil leucine zipper dimerization domain and a highly charged basic region that directly contacts DNA. The basic region is largely unfolded in the absence of DNA, but adopts a helical conformation upon DNA binding. Although a coil --> helix transition is entropically unfavorable, this conformational change positions the DNA-binding residues appropriately for sequence-specific interactions with DNA. The N-terminal residues of the GCN4 DNA-binding domain, DPAAL, make no DNA contacts and are not part of the conserved basic region, but are nonetheless important for DNA binding. Asp and Pro are often found at the N-termini of alpha-helices, and such N-capping motifs can stabilize alpha-helical structure. In the present study, we investigate whether these two residues serve to stabilize a helical conformation in the GCN4 basic region, lowering the energetic cost for DNA binding. Our results suggest that the presence of these residues contributes significantly to helical structure and to the DNA-binding ability of the basic region in the absence of the leucine zipper. Similar helix-capping motifs are found in approximately half of all bZip domains, and the implications of these findings for in vivo protein function are discussed.  相似文献   

5.
6.
7.
8.
Mitosin/CENP-F as a negative regulator of activating transcription factor-4   总被引:6,自引:0,他引:6  
Zhou X  Wang R  Fan L  Li Y  Ma L  Yang Z  Yu W  Jing N  Zhu X 《The Journal of biological chemistry》2005,280(14):13973-13977
  相似文献   

9.
10.
11.
12.
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号