首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.  相似文献   

4.
5.
Yi CR  Rosenberg N 《Journal of virology》2008,82(11):5307-5315
Abelson murine leukemia virus (Ab-MLV) arose from a recombination between gag sequences in Moloney MLV (Mo-MLV) and the c-abl proto-oncogene. The v-Abl oncoprotein encoded by Ab-MLV contains MA, p12, and a portion of CA sequences derived from the gag gene of Mo-MLV. Previous studies indicated that alteration of MA sequences affects the biology of Mo-MLV and Ab-MLV. To understand the role of these sequences in Ab-MLV transformation more fully, alanine substitution mutants that affect Mo-MLV replication were examined in the context of Ab-MLV. Mutations affecting Mo-MLV replication decreased transformation, while alanine mutations in residues dispensable for Mo-MLV replication did not. The altered v-Abl proteins displayed aberrant subcellular localization that correlated to transformation defects. Immunofluorescent analyses suggested that aberrant trafficking of the altered proteins and improper interaction with components of the cytoskeleton were involved in the phenotype. Similar defects in localization were observed when the Gag moiety containing these mutations was expressed in the absence of abl-derived sequences. These results indicate that MA sequences within the Gag moiety of the v-Abl protein contribute to proper localization by playing a dominant role in trafficking of the v-Abl molecule.  相似文献   

6.
7.
8.
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.  相似文献   

9.
Mediated import of proteins into the nucleus involves multiple cytosolic factors, including the small GTPase Ran. Whether Ran functions by interacting with other cytosolic proteins or components of the nuclear pore complex has been unclear. Furthermore, the precise transport step where Ran acts has not been determined. To address these questions, we have analyzed the binding interactions of Ran using permeabilized cells and isolated nuclear envelopes. By light and electron microscope immunolocalization, we have found that Ran accumulates specifically at the cytoplasmic surface of the nuclear pore complex when nuclear import in permeabilized cells is inhibited by nonhydrolyzable analogs of GTP. Ran associates with a peripheral pore complex region that is similar to the area where transport ligands accumulate by depletion of ATP, which arrests an early step of transport. Binding studies with isolated nuclear envelopes in the absence of added cytosol indicate that Ran-GTP directly interacts with a pore complex protein. Using blot overlay techniques, we detected a single prominent polypeptide of isolated nuclear envelopes that binds Ran-GTP. This corresponds to the 358-kD protein RanBP2, a Ran binding pore complex protein recently identified by two-hybrid screening. Thus, RanBP2 is likely to constitute the Ran-GTP-binding site detected at the cytoplasmic periphery of the pore complex. These data support a model in which initial ligand binding to the nuclear pore complex occurs at or near RanBP2, and that hydrolysis of GTP by Ran at this site serves to define commitment to the nuclear import pathway.  相似文献   

10.
Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.  相似文献   

11.
Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.  相似文献   

12.
The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3'CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.  相似文献   

13.
Five secretory carrier membrane proteins (SCAMP-1, -2, -3, -4, and -5) have been characterized in mammalian cells. Previously, SCAMP-1 and -2 have been implicated to function in exocytosis. RNA inhibitor-mediated deficiency of one or both of these SCAMPs interferes with dense core vesicle (DCV) exocytosis in neuroendocrine PC12 cells as detected by amperometry. Knockdowns of these SCAMPs each decreased the number and frequency of depolarization-induced exocytotic events. SCAMP-2 but not SCAMP-1 depletion also delayed the onset of exocytosis. Both knockdowns, however, altered fusion pore dynamics, increasing rapid pore closure and decreasing pore dilation. In contrast, knockdowns of SCAMP-3 and -5 only interfered with the frequency of fusion pore opening and did not affect the dynamics of newly opened pores. None of the knockdowns noticeably affected upstream events, including the distribution of DCVs near the plasma membrane and calcium signaling kinetics, although norepinephrine uptake/storage was moderately decreased by deficiency of SCAMP-1 and -5. Thus, SCAMP-1 and -2 are most closely linked to the final events of exocytosis. Other SCAMPs collaborate in regulating fusion sites, but the roles of individual isoforms appear at least partially distinct. neuroendocrine secretion; membrane fusion; amperometry  相似文献   

14.
15.
Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.  相似文献   

16.
Nuclei of cells infected with Moloney murine leukemia virus (MoMuLV) were examined for the presence of gag proteins. This analysis was performed in conjunction with other studies suggesting a possible role for gag proteins in regulating nuclear events relating to processing and/or transport of viral genomic RNA. We detected Pr65gag and a p30-related protein in a nuclear fraction of infected cells. We also found evidence that a highly conserved amino acid sequence, which is shared by p30 and U1 small nuclear ribonucleoprotein 70-kDa protein, is a component of the nuclear targeting sequence for Pr65gag. Immunoelectron microscopy studies with a monoclonal anti-p12 antibody established that approximately 18% of gag-containing proteins of MoMuLV are located in the nucleus. Such gag-containing proteins from a mutant MoMuLV that lacks N-terminal myristic acid had greater affinity for the nucleus, suggesting that fatty acid acylation of Pr65gag plays a role in overcoming the proposed nuclear transport signal. The possible roles that nuclear gag proteins may play in retroviral replication are discussed.  相似文献   

17.
The Ran-binding protein 2 (RanBP2) is a vertebrate mosaic protein composed of four interspersed RanGTPase binding domains (RBDs), a variable and species-specific zinc finger cluster domain, leucine-rich, cyclophilin, and cyclophilin-like (CLD) domains. Functional mapping of RanBP2 showed that the domains, zinc finger and CLD, between RBD1 and RBD2, and RBD3 and RBD4, respectively, associate specifically with the nuclear export receptor, CRM1/exportin-1, and components of the 19 S regulatory particle of the 26 S proteasome. Now, we report the mapping of a novel RanBP2 domain located between RBD2 and RBD3, which is also conserved in the partially duplicated isoform RanBP2L1. Yet, this domain leads to the neuronal association of only RanBP2 with two kinesin microtubule-based motor proteins, KIF5B and KIF5C. These kinesins associate directly in vitro and in vivo with RanBP2. Moreover, the kinesin light chain and RanGTPase are part of this RanBP2 macroassembly complex. These data provide evidence of a specific docking site in RanBP2 for KIF5B and KIF5C. A model emerges whereby RanBP2 acts as a selective signal integrator of nuclear and cytoplasmic trafficking pathways in neurons.  相似文献   

18.
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.  相似文献   

19.
Signal-dependent targeting of proteins into and out of the nucleus is mediated by members of the importin (IMP) family of transport receptors, which recognise targeting signals within a cargo protein and mediate passage through the nuclear envelope-embedded nuclear pore complexes. Regulation of this process is paramount to processes such as cell division and differentiation, but is also critically important for viral replication and pathogenesis; phosphorylation appears to play a major role in regulating viral protein nucleocytoplasmic trafficking, along with other posttranslational modifications. This review focuses on viral proteins that utilise the host cell IMP machinery in order to traffic into/out of the nucleus, and in particular those where trafficking is critical to viral replication and/or pathogenesis, such as simian virus SV40 large tumour antigen (T-ag), human papilloma virus E1 protein, human cytomegalovirus processivity factor ppUL44, and various gene products from RNA viruses such as Rabies. Understanding of the mechanisms regulating viral protein nucleocytoplasmic trafficking is paramount to the future development of urgently needed specific and effective anti-viral therapeutics. This article was originally intended for the special issue "Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import". The Publisher apologizes for any inconvenience caused.  相似文献   

20.
Host DNA repair enzymes have long been assumed to play a role in HIV replication, and many different DNA repair factors have been associated with HIV. In order to identify DNA repair pathways required for HIV infection, we conducted a targeted siRNA screen using 232 siRNA pools for genes associated with DNA repair. Mapping the genes targeted by effective siRNA pools to well-defined DNA repair pathways revealed that many of the siRNAs targeting enzymes associated with the short patch base excision repair (BER) pathway reduced HIV infection. For six siRNA pools targeting BER enzymes, the negative effect of mRNA knockdown was rescued by expression of the corresponding cDNA, validating the importance of the gene in HIV replication. Additionally, mouse embryo fibroblasts (MEFs) lacking expression of specific BER enzymes had decreased transduction by HIV-based retroviral vectors. Examining the role BER enzymes play in HIV infection suggests a role for the BER pathway in HIV integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号