首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究白及提取物对变异链球菌粘附、生物膜形成及活性的影响,评价其抗龋效果。方法市售白及95%乙醇浸提;纸片法、打孔法测定直接抑菌作用;液体稀释法检测MIC;结晶紫法研究亚抑菌浓度提取物对变异链球菌粘附能力及生物膜总量的影响;采用荧光显微镜和激光共聚焦显微镜观察常态牙菌斑生物膜生长过程中及药物处理后牙菌斑生物膜中死菌和活菌的构成,研究其对牙菌斑生物膜结构和活性的影响;运用扫描电镜观察白及药液对变异链球菌生物膜的影响。结果白及提取物具有一定的抑菌作用,MIC为16~62 mg/m L;结晶紫法定量研究生物膜结果显示白及药液作用4 h对变异链球菌的粘附均有抑制作用,抑制率为28.63%~60.08%;作用20 h对生物膜总量抑制率达77.08%;白及药液作用20 h,荧光染色显示生物膜活性明显被抑制,抑制率达62.03%;梯度浓度白及药液分别作用20 h后,激光共聚焦显微镜下观察到随着药液浓度增加,绿色的活菌、团块状结构减少,生物膜形成明显被抑制;扫描电镜下可见药液作用后细菌间粘性物质减少。结论高浓度白及提取液对变异链球菌有直接抑菌作用,亚抑菌浓度能抑制其粘附和生物膜的形成,进而具有抗龋作用。  相似文献   

2.
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.  相似文献   

3.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxS(Sm)) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

4.
LuxS-based signaling affects Streptococcus mutans biofilm formation   总被引:4,自引:0,他引:4  
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.  相似文献   

5.
The glucan-binding protein-A (GbpA) of Streptococcus mutans has been shown to contribute to the architecture of glucan-dependent biofilms formed by this species and influence virulence in a rat model. As S. mutans synthesizes multiple glucosyltransferases and nonglucosyltransferase glucan-binding proteins (GBPs), it is possible that there is functional redundancy that overshadows the full extent of GbpA contributions to S. mutans biology. Glucan-associated properties such as adhesion, aggregation, and biofilm formation were examined independently of other S. mutans GBPs by cloning the gbpA gene into a heterologous host, Streptococcus gordonii, and derivatives with altered or diminished glucosyltransferase activity. The presence of GbpA did not alter dextran-dependent aggregation nor the initial sucrose-dependent adhesion of S. gordonii. However, expression of GbpA altered the biofilm formed by wild-type S. gordonii as well as the biofilm formed by strain CH107 that produced primarily alpha-1,6-linked glucan. Expression of gbpA did not alter the biofilm formed by strain DS512, which produced significantly lower quantities of parental glucan. These data are consistent with a role for GbpA in facilitating the development of biofilms that harbor taller microcolonies via binding to alpha-1,6-linkages within glucan. The magnitude of the GbpA effect appears to be dependent on the quantity and linkage of available glucan.  相似文献   

6.
AIMS: We determined the effect of xanthorrhizol (XTZ) purified from the rhizome of Curcuma xanthorrhiza Roxb. on the Streptococcus mutans biofilms in vitro. METHODS AND RESULTS: The biofilms of S. mutans at different phases of growth were exposed to XTZ at different concentrations (5, 10 and 50 micromol l(-1)) and for different time exposures (1, 10, 30 and 60 min). The results demonstrated that the activity of XTZ in removing S. mutans biofilm was dependent on the concentration, exposure time and the phase growth of biofilm. A concentration of 5 micromol l(-1) of XTZ completely inhibited biofilm formation by S. mutans at adherent phases of growth, whereas 50 micromol l(-1) of XTZ removed 76% of biofilm at plateau accumulated phase when exposed to S. mutans biofilm for 60 min. CONCLUSIONS: Xanthorrhizol isolated from an edible plant (C. xanthorrhiza Roxb.) shows promise as an antibacterial agent for inhibiting and removing S. mutans biofilms in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: XTZ could be used as a potential antibacterial agent against biofilm formation by S. mutans.  相似文献   

7.
Streptococcus mutans produces a fructosyltransferase (FTF) enzyme, which synthesizes fructan polymers from sucrose. Fructans contribute to the virulence of the biofilm by acting as binding sites for S. mutans adhesion and as extracellular nutrition reservoir for the oral bacteria. Antibodies raised against a recombinant S. mutans FTF were used to test the effect of glucose, fructose, and sucrose on FTF expression in S. mutans GS-5 biofilms. Biofilms formed in the presence of fructose and glucose showed a higher ratio of FTF compared to biofilms formed in the presence of sucrose. Confocal laser scanning microscopy images of S. mutans biofilms indicated a carbohydrate-dependent FTF distribution. The layer adjacent to the surface and those at the liquid interface displayed high amounts cell-free FTF with limited amount of bacteria while the in-between layers demonstrated both cell-free FTF and cells expressing cell-surface FTF. Biofilm of S. mutans grown on hydroxyapatite surfaces expressed several FTF bands with molecular masses of 160, 125, 120, 100, and 50 kDa, as detected by using FTF specific antibodies. The results show that FTF expression and distribution in S. mutans GS-5 biofilms is carbohydrate regulated.  相似文献   

8.
The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity.  相似文献   

9.
The abilities of Streptococcus mutans to form biofilms and to survive acidic pH are regarded as two important virulence determinants in the pathogenesis of dental caries. Environmental stimuli are thought to regulate the expression of several genes associated with virulence factors through the activity of two-component signal transduction systems. Yet, little is known of the involvement of these systems in the physiology and pathogenicity of S. mutans. In this study, we describe a two-component regulatory system and its involvement in biofilm formation and acid resistance in S. mutans. By searching the S. mutans genome database with tblastn with the HK03 and RR03 protein sequences from S. pneumoniae as queries, we identified two genes, designated hk11 and rr11, that encode a putative histidine kinase and its cognate response regulator. To gain insight into their function, a PCR-mediated allelic-exchange mutagenesis strategy was used to create the hk11 (Em(r)) and rr11 (Em(r)) deletion mutants from S. mutans wild-type NG8 named SMHK11 and SMRR11, respectively. The mutants were examined for their growth rates, genetic competence, ability to form biofilms, and resistance to low-pH challenge. The results showed that deletion of hk11 or rr11 resulted in defects in biofilm formation and resistance to acidic pH. Both mutants formed biofilms with reduced biomass (50 to 70% of the density of the parent strain). Scanning electron microscopy revealed that the biofilms formed by the mutants had sponge-like architecture with what appeared to be large gaps that resembled water channel-like structures. The mutant biofilms were composed of longer chains of cells than those of the parent biofilm. Deletion of hk11 also resulted in greatly diminished resistance to low pH, although we did not observe the same effect when rr11 was deleted. Genetic competence was not affected in either mutant. The results suggested that the gene product of hk11 in S. mutans might act as a pH sensor that could cross talk with one or more response regulators. We conclude that the two-component signal transduction system encoded by hk11 and rr11 represents a new regulatory system involved in biofilm formation and acid resistance in S. mutans.  相似文献   

10.
The foodborne pathogen Listeria monocytogenes has the ability to develop biofilm in food-processing environment, which becomes a major concern for the food safety. The biofilm formation is strongly influenced by the availability of nutrients and environmental conditions, and particularly enhanced in poor minimal essential medium (MEM) containing glucose rather than in rich brain heart infusion (BHI) broth. To gain better insight into the conserved protein expression profile in these biofilms, the proteomes from biofilm- and planktonic-grown cells from MEM with 50?mM glucose or BHI were compared using two-dimensional polyacrylamide gel electrophoresis followed by MALDI-TOF/TOF analysis. 47 proteins were successfully identified to be either up (19 proteins) or down (28 proteins) regulated in the biofilm states. Most (30 proteins) of them were assigned to the metabolism functional category in cluster of orthologous groups of proteins. Among them, up-regulated proteins were mainly associated with the pentose phosphate pathway and glycolysis, whereas a key enzyme CitC involved in tricarboxylic acid cycle was down-regulated in biofilms compared to the planktonic states. These data implicate the importance of carbon catabolite control for L. monocytogenes biofilm formation in response to nutrient availability.  相似文献   

11.
目的观察LuxS基因缺失后变形链球菌生物膜成熟初期的变化情况。方法通过扫描电镜观察标准菌和缺陷菌在不同营养环境中生物膜成熟初期的形成情况。结果对不同营养环境中形成的生物膜观察,发现在富含蔗糖的环境中,缺陷菌成熟初期的生物膜形成能力较标准菌弱。结论 LuxS基因缺失后变形链球菌在蔗糖环境中生物膜形成的能力减弱。  相似文献   

12.
ComX activity of Streptococcus mutans growing in biofilms   总被引:1,自引:0,他引:1  
  相似文献   

13.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

14.
Biofouling is a process of surface colonization by microorganisms through cell adhesion and production of extracellular polymers (polysaccharides and proteins). It often causes serious problems in the chemical, medical and pharmaceutical industries. Recently, it was demonstrated that some natural phenolic compounds found in plants and vegetables have an antibiofouling effect, reducing formation of biofilm by Gram-negative bacteria. In this study, Streptococcus mutans, a Gram-positive bacterium was investigated for the antibiofouling effect of polyphenols. It was hypothesized that the two enzymes, glucosyltransferase and fructosyltransferase, produced by S. mutans, would be inhibited by the natural phenolic compounds. When these two enzymes were inhibited, less (or no) biofilms were formed. Enzymes were separated from a S. mutans culture medium, and their activities were measured with five different polyphenols using microtiter-plates and high-performance liquid chromatography. The results of minimum inhibitory concentration (MIC) were used to determine the enzyme inhibition effect of polyphenols on biofilm formation without killing the cells. Most of the polyphenols used showed considerable reduction of biofilm formation. Gallic acid and tannic acid showed significant enzyme inhibition effects below their MICs.  相似文献   

15.
Compared with traditional two-dimensional (2D) proteome analysis of Streptococcus mutans grown as a biofilm from a planktonic culture at steady state (Rathsam et al., Microbiol. 2005, 151, 1823-1837), the use of 2D fluorescence difference gel electrophoresis (DIGE) led to a 3-fold increase in the number of identified protein spots that were significantly altered in their level of expression (P < 0.050). Of the 73 identified proteins, only nine were up-regulated in biofilm grown cells. The results supported the previously surmised hypothesis that general metabolic functions were down-regulated in response to a reduction in growth rate in mature S. mutans biofilms. Up-regulation of competence proteins without any concomitant increase in stress-responsive proteins was confirmed, while the levels of glucosyltransferase C (GtfC), involved in glucan formation, O-acetylserine sulfhyrylase (cysteine synthetase A; CsyK), implicated in the formation of [Fe-S] clusters, and a hypothetical protein encoded by the open reading frame, SMu0188, were also up-regulated.  相似文献   

16.
Glucan plays a central role in sucrose-dependent biofilm formation by the dental pathogen Streptococcus mutans. This organism synthesizes several proteins capable of binding glucan. These are divided into the glucosyltransferases that catalyze the synthesis of glucan and the nonglucosyltransferase glucan-binding proteins (Gbps). The biological significance of the Gbps has not been thoroughly defined, but studies suggest that these proteins influence virulence and play a role in maintaining biofilm architecture by linking bacteria and extracellular molecules of glucan. We engineered a panel of Gbp mutants, targeting GbpA, GbpC, and GbpD, in which each gene encoding a Gbp was deleted individually and in combination. These strains were then analyzed by confocal microscopy and the biofilm properties were quantified by the biofilm quantification software comstat. All biofilms produced by mutant strains lost significant depth, but the basis for the reduction in height depended on which particular Gbp was missing. The loss of the cell-bound GbpC appeared dominant as might be expected based on losing the principal receptor for glucan. The loss of an extracellular Gbp, either GbpA or GbpD, also profoundly changed the biofilm architecture, each in a unique manner.  相似文献   

17.
Clinical studies indicate relationships between dental plaque, a naturally formed biofilm, and oral diseases. The crucial role of nonmicrobial biofilm constituents in maintaining biofilm structure and biofilm-specific attributes, such as resistance to shear and viscoelasticity, is increasingly recognized. Concurrent analyses of the diverse nonmicrobial biofilm components for multiparameter assessments formed the focus of this investigation. Comparable numbers of Actinomyces viscosus, Streptococcus sanguinis, Streptococcus mutans, Neisseria subflava, and Actinobacillus actinomycetemcomitans cells were seeded into multiple wells of 96-well polystyrene plates for biofilm formation. Quantitative fluorescence and confocal laser scanning microscopy (CLSM) examined the influences of dietary sugars, incubation conditions, ingredients in oral hygiene formulations, and antibiotics on biofilm components. Biofilm extracellular polymeric substances (EPS) were examined with an optimized mixture of fluorescent lectins, with biofilm proteins, lipids, and nucleic acids detected with specific fluorescent stains. Anaerobic incubation of biofilms resulted in significantly more biofilm EPS and extractable carbohydrates than those formed under aerobic conditions (P < 0.05). Sucrose significantly enhanced biofilm EPS in comparison to fructose, galactose, glucose, and lactose (P < 0.05). CLSM demonstrated thicker biofilms under sucrose-replete conditions, along with significant increases in biofilm EPS, proteins, lipids, and nucleic acids, than under conditions of sucrose deficiency (P < 0.05). Agents in oral hygiene formulations (chlorhexidine, ethanol, and sodium lauryl sulfate), a mucolytic agent (N-acetyl-L-cysteine), and antibiotics with different modes of action (amoxicillin, doxycycline, erythromycin, metronidazole, and vancomycin) inhibited biofilm components (P < 0.05). Multiparameter analysis indicated a dose-dependent inhibition of biofilm EPS and protein by chlorhexidine and sodium lauryl sulfate, along with distinctive inhibitory patterns for subinhibitory concentrations of antibiotics. Collectively, these results highlight multiparameter assessments as a broad platform for simultaneous assessment of diverse biofilm components.  相似文献   

18.
Streptococcus mutans has at least six pairs of open reading frames that are homologous to bacterial two-component regulatory systems. Putative response regulators from five out of six of these pairs were successfully mutated by insertion of a kanamycin resistance marker and the effects of inactivation of the genes on the ability of the cells to form biofilms in an in vitro model were assessed. Disruption of the response regulators of four systems had no effect on biofilm formation, whereas disruption of one response regulator caused a substantial decrease in biofilm formation as compared to the wild-type S. mutans.  相似文献   

19.
20.
We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号