首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free cysteine residues in the extremely thermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized using selective chemical modification with the stable nitroxyl biradical bis(1-oxy-2,2,5,5-tetramethyl-3-imidazoline-4-yl)disulfide, via a thiol-disulfide exchange reaction and with 2[14C]iodoacetic acid, via S-alkylation. The respective reactions were monitored by electron paramagenetic resonance (EPR) and by the incorporation of the radioactive label. In native TBADH, the rapid modification of one cysteine residue per subunit by the biradical and the concomitant loss of catalytic activity was reversed by DTT. NADP protected the enzyme from both modification and inactivation by the biradical. RPLC fingerprint analysis of reduced and S-carboxymethylated lysyl peptides from the radioactive alkylated enzyme identified Cys 203 as the readily modified residue. A second cysteine residue was rapidly modified with both modification reagents when the catalytic zinc was removed from the enzyme by o-phenanthroline. This cysteine residue, which could serve as a putative ligand to the active-site zinc atom, was identified as Cys 37 in RPLC. The EPR data suggested a distance of < or 10 A between Cys 37 and Cys 203. Although Cys 283 and Cys 295 were buried within the protein core and were not accessible for chemical modification, the two residues were oxidized to cystine when TBADH was heated at 75 degrees C, forming a disulfide bridge that was not present in the native enzyme, without affecting either enzymatic activity or thermal stability. The status of these cysteine residues was verified by site directed mutagenesis.  相似文献   

2.
Numerous proteins that are involved in cell signaling and viral replication require post-translational modification by palmitoylation to function properly. The molecular details by which this palmitoyl modification affects protein function remain poorly understood. To facilitate in vitro biochemical and structural studies of the role of palmitoylation on protein function, a method was developed for alkylating peptides with saturated C16 groups at cysteine residues and demonstrated using peptides derived from the palmitoylated region of Sindbis virus E2 glycoprotein. The synthetic approach takes advantage of disulfide chemistry to specifically modify only the cysteine residues within peptides and covalently links C16 groups via disulfide bridges using a new thioalkylating reagent, hexyldexyldithiopyridine. The chemistry presented here takes place in solution under mild conditions without the need for protection of the peptide functional groups. A method for purifying these modified peptides is also described. This protocol can be of general use to investigators studying the role of palmitoylation in biological systems.  相似文献   

3.
Recombinant human glial cell line-derived neurotrophic factor has been implicated to have therapeutic potential in the treatment of neurodegenerative diseases. The mature protein is a single polypeptide of 134 amino acid residues and functions as a disulfide-linked dimer. Reduction of the protein with dithiothreitol at pH 7.0 and in the absence of denaturant showed that the single intermolecular cystine bridge was reduced preferentially. Direct alkylation of the generated free sulfhydryl group using iodoacetamide or iodoacetate without denaturant was incomplete. Unfolding the protein in 6 M guanidine hydrochloride prior to the modification showed rapid disulfide scrambling. However, the sulfhydryl-modifying reagent N-ethylmaleimide was able to label quantitatively the free cysteinyl residue in the absence of any added chaotropic agent. By a combination of peptide mapping, Edman degradation, and mass spectrometric analysis, the labeled residue was identified to be Cys101, hence verifying the location of the intermolecular disulfide bond. The modified protein behaved as a noncovalent dimer when chromatographed through a Superdex 75 column under nondenaturing conditions and was comparable in biological activity to an unmodified control sample. The results therefore indicate that the intermolecular disulfide bridge of the protein is not essential for its biological function.  相似文献   

4.
The engineered disulfide bridge A23C/L203C in human carbonic anhydrase II, inserted from homology modeling of Neisseria gonorrhoeae carbonic anhydrase, significantly stabilizes the native state of the protein. The inserted cysteine residues are placed in the interior of the structure, and because of the conformationally restrained localization, the protein is expressed in the reduced state and the cysteines are not readily oxidized. However, upon exposure to low concentrations of denaturant (0.6 M guanidine hydrochloride), corresponding to the lower part of the denaturation curve for the first unfolding transition, the oxidation rate of correctly formed disulfide bridges was markedly increased. By entropy estimations it appears that the increased flexibility, induced by the denaturant, enables the cysteines to find each other and hence to form the disulfide bridge. The outlined strategy of facilitating formation of disulfide bonds by addition of adjusted concentrations of a denaturant should be applicable to other proteins in which engineered cysteine residues are located in nonideal conformations. Moreover, a S99C/V242C variant was constructed, in which the cysteine residues are located on the surface. In this mutant the disulfide bridge was spontaneously formed and the native state was considerably stabilized (midpoint concentration of unfolding was increased from 1.0 to 1.4 M guanidine hydrochloride).  相似文献   

5.
Native disulfide bonds in therapeutic proteins are crucial for tertiary structure and biological activity and are therefore considered unsuitable for chemical modification. We show that native disulfides in human interferon alpha-2b and in a fragment of an antibody to CD4(+) can be modified by site-specific bisalkylation of the two cysteine sulfur atoms to form a three-carbon PEGylated bridge. The yield of PEGylated protein is high, and tertiary structure and biological activity are retained.  相似文献   

6.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Mast cell degranulating (MCD) peptide, a 22 amino acid residue basic peptide from bee venom, was synthesized by stepwise solid phase synthesis on a benzhydrylamine resin support. N alpha-t-butyloxycarbonyl and benzyl type side chain protection was used. The two disulfide bridges were formed selectively by using S-acetamidomethyl protection for the cysteine residues in position 5 and 19 and S-methylbenzyl protection for the cysteine residues in positions 3 and 15. Crude synthetic MCD peptide was obtained following deprotection and cleavage from the resin by the low/high HF method. The peptide was isolated in pure form by ion exchange chromatography and gel filtration. The final product has physical, chemical, and biological properties identical with those reported for the natural product. The synthetic strategy utilized for MCD peptide will facilitate the availability of structurally similar analogs for evaluating antihistaminic and anti-inflammatory activities.  相似文献   

8.
Studies of structure-activity relationships of human interleukin-2   总被引:4,自引:0,他引:4  
Human interleukin-2 (IL-2) has 3 cysteine residues; cysteines 58 and 105 form an intramolecular disulfide bridge, whereas cysteine 125 has a free sulfhydryl group. In this study, site-specific mutagenesis has been used to modify the cysteine residues of recombinant Escherichia coli-derived IL-2 (rIL-2) to evaluate the functional structure of IL-2. Substitution or deletion of cysteine 105 disrupted the disulfide bridge and yielded a mutant protein which was 8-10 times less active than wild type rIL-2. A similar modification at position 58, however, reduced the activity of rIL-2 by more than 250-fold. Although substitution of serine for cysteine 125 did not affect IL-2 activity, deletion of cysteine 125 or deletion of amino acids in the vicinity of this cysteine yielded mutant proteins with little, if any, activity. These results indicate that the protein structure in the vicinity of both positions 58 and 125 is more critical than that close to position 105. These findings may provide a clue to the understanding of the functional structure of human IL-2.  相似文献   

9.
PURPOSE OF WORK: Soluble protein expression is an important first step during various types of protein studies. Here, we present the screening strategy of secretable mutant. The strategy aimed to identify those cysteine residues that provoke protein misfolding in the heterologous expression system. Intentional mutagenesis studies should consider the size of the library and the time required for expression screening. Here, we proposed a cysteine-to-serine shuffling mutation strategy (CS shuffling) using a Saccharomyces cerevisiae expression system. This strategy of site-directed shuffling mutagenesis of cysteine-to-serine residues aims to identify the cysteine residues that cause protein misfolding in heterologous expression. In the case of a nonglycosylated mutant of the taste-modifying protein miraculin (MCL), which was used here as a model protein, 25% of all constructs obtained from CS shuffling expressed MCL mutant, and serine mutations were found at Cys47 or Cys92, which are involved in the formation of the disulfide bond. This indicates that these residues had the potential to provoke protein misfolding via incorrect disulfide bonding. The CS shuffling can be performed using a small library and within one week, and is an effective screening strategy of soluble protein expression.  相似文献   

10.
HNP-2 is a 29-residue peptide present in human neutrophils and is a member of the defensin family of antimicrobial peptides. All defensins contain an invariant disulfide infrastructure comprised of 6 half-cystine residues. The disulfide structure of HNP-2 was determined using a novel method to identify the cross-links involving the amino- and carboxyl-terminal cysteine residues. A derivative of HNP-2 was synthesized by covalent modification of the terminal cysteine residues. This derivative was purified, characterized, and subjected to exhaustive proteolytic digestion. Characterization of purified proteolytic fragments by amino acid analysis and/or sequence analysis identified an oligopeptide containing all 6 cystine residues. This oligopeptide was subjected to a single cycle of Edman degradation to cleave the peptide bond linking 2 adjacent cysteines. Purification and characterization of the Edman reaction products allowed for assignment of the disulfide array in HNP-2, revealing a cystine motif unique to the defensin peptide family. Further, the covalent structure of HNP-2 was found to be cyclic as one disulfide links the amino- and carboxyl-terminal cysteine residues. HNP-2 is the only polypeptide known to possess such a configuration.  相似文献   

11.
The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformation-dependent uptake efficiency that is correlated with efficient binding to heparan sulfate and lipid-induced conformational changes. The peptide contains a disulfide bridge formed by terminal cysteine residues. At concentrations exceeding 10 μm, this peptide undergoes the same rapid entry into the cytoplasm that was described previously for the arginine-rich CPPs nona-arginine and Tat. Cytoplasmic entry strictly depends on the presence of the disulfide bridge. To better understand this conformation dependence, NMR spectroscopy was performed for the free peptide, and CD measurements were performed for free and lipid-bound peptide. In solution, the peptides showed only slight differences in secondary structure, with a predominantly disordered structure both in the presence and absence of the disulfide bridge. In contrast, in complex with large unilamellar vesicles, the conformation of the oxidized and reduced forms of the peptide clearly differed. Moreover, surface plasmon resonance experiments showed that the oxidized form binds to heparan sulfate with a considerably higher affinity than the reduced form. Consistently, membrane binding and cellular uptake of the peptide were reduced when heparan sulfate chains were removed.  相似文献   

12.
The 79-amino acid, mature SP-B peptide contains three intramolecular disulfide bonds shared by all saposin-like proteins. This study tested the hypothesis that the disulfide bond formed between cysteine residues 35 and 46 (residues 235 and 246 of the SP-B proprotein) is essential for proper function of SP-B. To test the role of this bridge in SP-B function in vivo, a construct was generated in which cysteine residues 235 and 246 of the human SP-B proprotein were mutated to serine and cloned under the control of the 3.7-kilobase hSP-C promoter (hSP-B(C235S/C246S)). In two transgenic mouse lines, expression of the mutant peptide in the wild-type murine SP-B background was invariably lethal in the neonatal period. In four additional lines, survival was inversely related to the level of transgene expression. To test the ability of the mutant peptide to functionally replace the wild-type protein, transgenic mice were crossed into the SP-B null background. No animals that expressed hSP-B(C235S/C246S) in the murine SP-B-/- background survived the neonatal period. hSP-B(C235S/C246S) proprotein accumulated in the endoplasmic reticulum and was not processed to the mature, biologically active peptide. The results of these studies demonstrate that the intramolecular bridge between residues 235 and 246 is critical for intracellular trafficking of SP-B and suggest that overexpression of mutant SP-B in the wild-type background may be lethal.  相似文献   

13.
Guo ZY  Jia XY  Feng YM 《Biological chemistry》2004,385(12):1171-1175
Insulin contains three disulfide bonds, one intrachain bond, A6-A11, and two interchain bonds, A7-B7 and A20-B19. Site-directed mutagenesis results (the two cysteine residues of disulfide A7-B7 were replaced by serine) showed that disulfide A7-B7 is crucial to both the structure and activity of insulin. However, chemical modification results showed that the insulin analogs still retained relatively high biological activity when A7Cys and B7Cys were modified by chemical groups with a negative charge. Did the negative charge of the modification groups restore the loss of activity and/or the disturbance of structure of these insulin analogs caused by deletion of disulfide A7-B7? To answer this question, an insulin analog with both A7Cys and B7Cys replaced by Glu, which has a long side-chain and a negative charge, was prepared by protein engineering, and its structure and activity were analyzed. Both the structure and activity of the present analog are very similar to that of the mutant with disulfide A7-B7 replaced by Ser, but significantly different from that of wild-type insulin. The present results suggest that removal of disulfide A7-B7 will result in serious loss of biological activity and the native conformation of insulin, even if the disulfide is replaced by residues with a negative charge.  相似文献   

14.
A trypsin-resistant core peptide of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) was isolated and analyzed by high-energy Cs+ liquid secondary-ion (LSI) mass spectrometric analysis. This analysis provided successful detection of the high-mass disulfide-linked core peptide as well as information confirming the existence of disulfide pairing. Similarly, LSI mass spectrometric analysis of the peptide fragments isolated chromatographically from a Staphylococcus aureus V8 protease digest of rhGM-CSF provided rapid confirmation of the cDNA-derived sequence and determination of the existing disulfide bonds between cysteine residues 54-96 and 88-121. Electrospray ionization mass spectrometry was employed to measure the molecular weight of the intact protein and to determine the number of the disulfide bonds in the protein molecule by comparative analysis of the protein before and after reduction with beta-mercaptoethanol.  相似文献   

15.
More than 42,000 3D structures of proteins are available on the Internet. We have shown that the chemical insertion of a 3-carbon bridge across the native disulfide bond of a protein or peptide can enable the site-specific conjugation of PEG to the protein without a loss of its structure or function. For success, it is necessary to select an appropriate and accessible disulfide bond in the protein for this chemical modification. We describe how to use public protein databases and molecular modeling programs to select a protein rationally and to identify the optimum disulfide bond for experimental studies. Our computational approach can substantially reduce the time required for the laboratory-based chemical modification. Identification of solvent-accessible disulfides using published structural information takes approximately 2 h. Predicting the structural effects of the disulfide-based modification can take 3 weeks.  相似文献   

16.
PEGylation has turned proteins into important new biopharmaceuticals. The fundamental problems with the existing approaches to PEGylation are inefficient conjugation and the formation of heterogeneous mixtures. This is because poly(ethylene glycol) (PEG) is usually conjugated to nucleophilic amine residues. Our PEGylation protocol solves these problems by exploiting the chemical reactivity of both of the sulfur atoms in the disulfide bond of many biologically relevant proteins. An accessible disulfide bond is mildly reduced to liberate the two cysteine sulfur atoms without disturbing the protein's tertiary structure. Site-specific PEGylation is achieved with a bis-thiol alkylating PEG reagent that sequentially undergoes conjugation to form a three-carbon bridge. The two sulfur atoms are re-linked with PEG selectively conjugated to the bridge. PEGylation of a protein can be completed in 24 h and purification of the PEG-protein conjugate in another 3 h. We have successfully applied this approach to PEGylation of cytokines, enzymes, antibody fragments and peptides, without destroying their tertiary structure or abolishing their biological activity.  相似文献   

17.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

18.
Hepatoma-derived growth factor (HDGF) was first purified as a growth factor secreted by hepatoma cells. It promotes angiogenesis and has been related to tumorigenesis. To date, little is known about the molecular mechanisms of HDGF functions and especially its routes or regulation of secretion. Here we show that secretion of HDGF requires the N-terminal 10 amino acids and that this peptide can mediate secretion of other proteins, such as enhanced green fluorescent protein, if fused to their N-terminus. Our results further demonstrate that cysteine residues at positions 12 and 108 are linked via an intramolecular disulfide bridge. Surprisingly, phosphorylation of serine 165 in the C-terminal part of HDGF plays a critical role in the secretion process. If this serine is replaced by alanine, the N-terminus is truncated, the intramolecular disulfide bridge is not formed and the protein is not secreted. In summary, these observations provide a model of how phosphorylation, a disulfide bridge and proteolytic cleavage are involved in HDGF secretion.  相似文献   

19.
99mTc is widely thought to directly bind proteins through thiolate groups of cysteine residues, resulting in Tc-cysteinyl-protein bonds. Chemical reduction of disulfide bonds in proteins is widely used to generate thiolates with the goal of increasing 99mTc binding. This strategy is used because most proteins contain no thiolates, but many do contain disulfide bonds. In this study, we have evaluated the hypothesis that imidazole groups of histidine are also involved in direct 99mTc binding to proteins. Human gamma-globulin was used as the model protein in these studies. The immunoglobulin was used (a) without reduction or was (b) treated with stannous ions to reduce disulfide bonds thereby increasing thiolate concentration. These proteins were used to evaluate the hypothesis that imidazole as well as thiolate groups bind Tc. The proteins were evaluated by (a) using free amino acids to compete with proteins for 99mTc and (b) by chemical modification of amino acid side chains. In addition, peptides known to contain either cysteine or histidine, but not both, were also successfully directly labeled with 99mTc. These results indicate that in proteins (and peptides) imidazole-containing groups as well as thiolate-containing groups bind Tc.  相似文献   

20.
Isolated uncoupling protein (UCP) can be cross-linked, by various disulfide-forming reagents, to dimers. The best cross-linking is achieved with Cu2+-phenanthroline oxidation. Because cross-linking is independent of UCP concentration and prevented by SDS addition, a disulfide bridge must be formed between the two subunits of the native dimer. Cross-linking is prevented by SH reagent and reversed by SH-reducing reagents. In mitochondria, cross-linking of UCP with disulfide-forming agents is even more efficient than in isolated state. It proves that UCP is a dimer in mitochondria, before isolation. Disulfide-bridge formation does not inhibit GTP-binding to UCP. Cross-linked UCP re-incorporated in proteoliposomes either before or after cross-linking fully retains the H1-transport function. Rapid cross-linking by membrane impermeant reagents indicates a surface localization of the C-terminus in soluble UCP and projection to the outer surface in mitochondria. Intermolecular disulfide-bridge formation in a dimer requires juxtaposition of identical cysteines at the twofold symmetry axis. A rigid juxtaposition of cysteines is unlikely, unless intended for a native disulfide bridge. The absence of such a bridge in UCP suggests that juxtaposition of cysteines is generated by high mobility. In order to localize the cysteine involved, cross-linked UCP was cleaved by BrCN. The CB-7 C-terminal peptide, which contains cysteines at positions 287 and 304, disappears. Limited trypsinolytic cleavage, previously shown to occur at Lys-292, removed cross-linking in UCP both in the solubilized and mitochondrially bound state. The cleaved C-terminal peptide of 11 residues contains only cystein-304 which, thus, should be the only one (out of 7 cysteines in UCP) involved in the S-S bridge formation. Obviously, the C-terminal location of the cysteine, because of its high mobility, permits juxtapositioning for cross-linking. This agrees with predictions from hydrophobicity analysis that the last 14 residues in UCP protrude from the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号