首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first gene cluster encoding for a membrane bound [NiFe] hydrogenase from a methanotroph, Methylococcus capsulatus (Bath), was cloned and sequenced. The cluster consisted of the structural genes hupS and hupL and accessory genes hupE, hupC and hupD. A DeltahupSL deletion mutant of Mc. capsulatus was constructed by marker exchange mutagenesis. Membrane associated hydrogenase activity disappeared. The membrane associated hydrogenase appeared to have a hydrogen uptake function in vivo.  相似文献   

2.
The photosynthetic bacterium Rhodobacter capsulatus synthesises a membrane-bound [NiFe] hydrogenase encoded by the H2 uptake hydrogenase (hup)SLC structural operon. The hupS and hupL genes encode the small and large subunits of hydrogenase, respectively; hupC encodes a membrane electron carrier protein which may be considered as the third subunit of the uptake hydrogenase. In Wolinella succinogenes, the hydC gene, homologous to hupC, has been shown to encode a low potential cytochrome b which mediates electron transfer from H2 to the quinone pool of the bacterial membrane. In whole cells of R. capsulatus or intact membrane preparation of the wild type strain B10, methylene blue but not benzyl viologen can be used as acceptor of the electrons donated by H2 to hydrogenase; on the other hand, membranes of B10 treated with Triton X-100 or whole cells of a HupC- mutant exhibit both benzyl viologen and methylene blue reductase activities. We report the effect of diphenylene iodonium (Ph2I), a known inhibitor of mitochondrial complex I and of various monooxygenases on R. capsulatus hydrogenase activity. With H2 as electron donor, Ph2I inhibited partially the methylene blue reductase activity in an uncompetitive manner, and totally benzyl viologen reductase activity in a competitive manner. Furthermore, with benzyl viologen as electron acceptor, Ph2I increased dramatically the observed lagtime for dye reduction. These results suggest that two different sites exist on the electron donor side of the membrane-bound [NiFe] hydrogenase of R. capsulatus, both located on the small subunit. A low redox potential site which reduces benzyl viologen, binds Ph2I and could be located on the distal [Fe4S4] cluster. A higher redox potential site which can reduce methylene blue in vitro could be connected to the high potential [Fe3S4] cluster and freely accessible from the periplasm.  相似文献   

3.
In Azotobacter chroococcum the hydrogenase structural genes (hupSL) cover about 2.8 kb of a 15-kb region associated with hydrogen-uptake (Hup) activity. Two other genes in this region, hupD and hupE, were located 8.9 kb downstream of hupL and were shown to be essential for hydrogenase activity by insertion mutagenesis. A fragment of DNA beginning 3.4 kb downstream of hupL was able to complement the hupE mutant, supporting earlier evidence for a promoter downstream of hupSL. Hybridization experiments showed that hupD and hupE share some similarity with a region of Alcaligenes eutrophus DNA which is apparently involved in the formation of catalytically active hydrogenase. The hupD gene encodes a 379-amino acid, 41.4-kDa polypeptide while hupE codes for a 341-amino acid, 36.1-kDa product. The predicted amino acid sequences of the hupD and hupE genes are homologous to the Escherichia coli hypD and hypE gene products, respectively. A polar mutation in hupD had no effect on beta-galactosidase activity in a strain also carrying a hupL-lacZ fusion, indicating that hupD and hupE are probably not involved in regulating hydrogenase structural gene expression.  相似文献   

4.
The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis.  相似文献   

5.
The nucleotide sequence of a 3.2 kb region following the hydrogenase structural operon (hupSLCDEF) in the H2-uptake gene cluster from Rhizobium leguminosarum by viciae strain 128C53 has been determined. Five closely linked genes encoding products of 16.3 (HupG), 30.5 (HupH), 8.0 (HupI), 18.4 (HupJ) and 38.7 (HupK) kDa were identified 166 bp downstream from hupF. Transposon insertions into hupG, hupH, hupJ and hupK suppress the H2-oxidizing capability of the wild-type strain. The amino acid sequence deduced from hupI contains two Cys-X-X-Cys motifs, characteristic of rubredoxins, separated by 29 amino acid residues showing strong sequence homology with other bacterial rubredoxins. The amino acid-derived sequence from hupG and hupH showed homology to products from genes hyaE and hyaF of the operon encoding hydrogenase 1 from Escherichia coli, and hupJ and hupK were related to open reading frames identified in Rhodobacter capsulatus and Azotobacter vinelandii hydrogenase gene clusters. An involvement of the hupGHIJK gene cluster in redox reactions related to hydrogenase synthesis or activity is predicted on the basis of the function as electron carrier attributed to rubredoxin.  相似文献   

6.
7.
The structural genes (hupSL) of the membrane-bound NiFe-containing H2-uptake hydrogenase (Hup) of Azotobacter chroococcum were identified by oligonucleotide screening and sequenced. The small subunit gene (hupS) encodes a signal sequence of 34 amino acids followed by a 310-amino-acid, 34156D protein containing 12 cysteine residues. The large subunit gene (hupL) overlaps hupS by one base and codes for a predicted 601-amino-acid, 66433D protein. There are two regions of strong homology with other Ni hydrogenases: a Cys-Thr-Cys-Cys-Ser motif near the N-terminus of HupS and an Asp-Pro-Cys-Leu-Ala-Cys motif near the carboxy-terminus of HupL. Strong overall homology exists between Azotobacter, Bradyrhizobium japonicum and Rhodobacter capsulatus Hup proteins but less exists between the Azotobacter proteins and hydrogenases from Desulfovibrio strains. Mutagenesis of either hupS or hupL genes of A. chroococcum yielded Hup- phenotypes but some of these mutants retained a partial H2-evolving activity. Hybridization experiments at different stages of gene segregation confirmed the multicopy nature of the Azotobacter genome.  相似文献   

8.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

9.
10.
11.
12.
A PCR was developed for conserved regions within the cyanobacterial small subunit uptake hydrogenase (hupS) gene family. These primers were used to PCR amplify partial hupS sequences from 15 cyanobacterial strains. HupS clone libraries were constructed from PCR-amplified genomic DNA and reverse-transcribed mRNA extracted from phototrophic biofilms cultivated under nitrate-limiting conditions. Partial hupS gene sequences derived from cyanobacteria, some of which were not previously known to contain hup genes were used for phylogenetic analysis. Phylogenetic trees constructed with partial hupS genes were congruent with those based on 16S rRNA genes, indicating that hupS sequences can be used to identify cyanobacteria expressing hup. Sequences from heterocystous and nonheterocystous cyanobacteria formed two separate clusters. Analysis of clone library data showed a discrepancy between the presence and the activity of cyanobacterial hupS genes in phototrophic biofilms. The results showed that the hupS gene can be used to characterize the diversity of natural populations of diazotrophic cyanobacteria, and to characterize gene expression patterns of individual species and strains.  相似文献   

13.
Genes homologous to hydrogenase accessory genes are scattered over the whole genome in the cyanobacterium Synechocystis sp. PCC 6803. Deletion and insertion mutants of hypA1 (slr1675), hypB1 (sll1432), hypC, hypD, hypE and hypF were constructed and showed no hydrogenase activity. Involvement of the respective genes in maturation of the enzyme was confirmed by complementation. Deletion of the additional homologues hypA2 (sll1078) and hypB2 (sll1079) had no effect on hydrogenase activity. Thus, hypA1 and hypB1 are specific for hydrogenase maturation. We suggest that hypA2 and hypB2 are involved in a different metal insertion process. The hydrogenase activity of DeltahypA1 and DeltahypB1 could be increased by the addition of nickel, suggesting that HypA1 and HypB1 are involved in the insertion of nickel into the active site of the enzyme. The urease activity of all the hypA and hypB single- and double-mutants was the same as in wild-type cells. Therefore, there seems to be no common function for these two hyp genes in hydrogenase and urease maturation in Synechocystis. Similarity searches in the whole genome yielded Slr1876 as the best candidate for the hydrogenase-specific protease. The respective deletion mutant had no hydrogenase activity. Deletion of hupE had no effect on hydrogenase activity but resulted in a mutant unable to grow in a medium containing the metal chelator nitrilotriacetate. Growth was resumed upon the addition of cobalt or methionine. Because the latter is synthesized by a cobalt-requiring enzyme in Synechocystis, HupE is a good candidate for a cobalt transporter in cyanobacteria.  相似文献   

14.
15.
Azotobacter vinelandii cultures express more H2 uptake hydrogenase activity when fixing N2 than when provided with fixed N. Hydrogen, a product of the nitrogenase reaction, is at least partly responsible for this increase. The addition of H2 to NH4+-grown wild-type cultures caused increased whole-cell H2 uptake activity, methylene blue-dependent H2 uptake activity of membranes, and accumulation of hydrogenase protein (large subunit as detected immunologically) in membranes. Both rifampin and chloramphenicol inhibited the H2-mediated enhancement of hydrogenase synthesis. Nif- A. vinelandii mutants with deletions or insertions in the nif genes responded to added H2 by increasing the amount of both whole-cell and membrane-bound hydrogenase activities. Nif- mutant strain CA11 contained fourfold more hydrogenase protein when incubated in N-free medium with H2 than when incubated in the same medium containing Ar. N2-fixing wild-type cultures that produce H2 did not increase hydrogenase protein levels in response to added H2.  相似文献   

16.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   

17.
Diversity and evolution of hydrogenase systems in rhizobia   总被引:1,自引:0,他引:1  
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.  相似文献   

18.
A gene bank of the 450-kilobase (kb) megaplasmid pHG1 from the hydrogen-oxidizing bacterium Alcaligenes eutrophus H16 was constructed in the broad-host-range mobilizable vector pSUP202 and maintained in Escherichia coli. hox DNA was identified by screening the E. coli gene bank for restoration of hydrogenase activity in A. eutrophus Hox mutants. Hybrid plasmids that contained an 11.6-kb EcoRI fragment restored soluble NAD-dependent hydrogenase activity when transferred by conjugation into one class of Hos- mutants. An insertion mutant impaired in particulate hydrogenase was partially restored in Hop activity by an 11-kb EcoRI fragment. A contiguous sequence of two EcoRI fragments of 8.6 and 2.0 kb generated Hox+ recombinants from mutants that were devoid of both hydrogenase proteins. hox DNA was subcloned into the vector pVK101. The resulting recombinant plasmids were used in complementation studies. The results indicate that we have cloned parts of the structural genes coding for Hos and Hop activity and a complete regulatory hox DNA sequence which encodes the thermosensitive, energy-dependent derepression signal of hydrogenase synthesis in A. eutrophus H16.  相似文献   

19.
Deletion mutants of Escherichia coli specific for hydrogenase isoenzyme 1 (HYD1) have been constructed and characterized. The hya operon, which contains genes for the two HYD1 structural subunits and four additional genes, was mapped at 22 min on the E. coli chromosome. The total hydrogenase activities of the HYD1-negative mutant and wild-type strains were similar. However, the formate dehydrogenase activity associated with the formate hydrogen lyase pathway was lower in the mutant. The hya mutant (strain AP1), complemented with only the hydrogenase structural genes (hyaAB), produced antigenically identifiable but inactive HYD1 protein. The first five genes of hya (hyaA to hyaE) were required for the synthesis of active HYD1, but wild-type levels of HYD1 activity were restored only when mutant cells were transformed with all six genes of the operon. When AP1 was complemented with hya carried on a high-copy-number plasmid, the HYD1 structural subunits were overexpressed, but the excess protein was unprocessed and localized in the soluble fraction of the cell. The products of hyaDEF are postulated to be involved in the processing of nascent structural subunits (HYAA and HYAB). This processing takes place only after the subunits are inserted into the cell membrane. It is concluded that the biosynthesis of active HYD1 is a complex biochemical process involving the cellular localization and processing of nascent structural subunits, which are in turn dependent on the insertion of nickel into the nascent HYD1 large subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号