首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.  相似文献   

2.
The yeast species Saccharomyces bayanus and Saccharomyces pastorianus are of industrial importance since they are involved in the production process of common beverages such as wine and lager beer; however, they contain strains whose variability has been neither fully investigated nor exploited in genetic improvement programs. We evaluated this variability by using PCR-restriction fragment length polymorphism analysis of 48 genes and partial sequences of 16. Within these two species, we identified “pure” strains containing a single type of genome and “hybrid” strains that contained portions of the genomes from the “pure” lines, as well as alleles termed “Lager” that represent a third genome commonly associated with lager brewing strains. The two pure lines represent S. uvarum and S. bayanus, the latter a novel group of strains that may be of use in strain improvement programs. Hybrid lines identified include (i) S. cerevisiae/S. bayanus/Lager, (ii) S. bayanus/S. uvarum/Lager, and (iii) S. cerevisiae/S. bayanus/S. uvarum/Lager. The genome of the lager strains may have resulted from chromosomal loss, replacement, or rearrangement within the hybrid genetic lines. This study identifies brewing strains that could be used as novel genetic sources in strain improvement programs and provides data that can be used to generate a model of how naturally occurring and industrial hybrid strains may have evolved.  相似文献   

3.
Two yeast isolates, a wine-making yeast first identified as a Mel+ strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes. Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene fragments, and the sequence analysis of a part of the two MET2 gene alleles found support the notion that these two strains constitute hybrids between Saccharomyces cerevisiae and Saccharomyces bayanus. The two hybrid strains had completely different restriction patterns of mitochondrial DNA as well as different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain is equally divergent from both putative parents, S. bayanus and S. cerevisiae. Some fermentative properties were also examined, and one phenotype was found to reflect the hybrid nature of these two strains. The origin and nature of such hybridization events are discussed.  相似文献   

4.

The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  相似文献   

5.
Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.  相似文献   

6.
Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait – kinetics parameters, life-history traits, enological parameters and aromas –, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.  相似文献   

7.
Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocations generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments.  相似文献   

8.
During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.  相似文献   

9.
Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, “Saaz” and “Frohberg.” This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma.  相似文献   

10.
Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380T and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380T harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380T and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380T or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events linking S. lagerae/S. uvarum/S. cerevisiae with their hybrid species, S. bayanus/pastorianus.  相似文献   

11.
Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.  相似文献   

12.
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.  相似文献   

13.
Previous comparisons of centromeric DNA sequences in laboratory strains of Saccharomyces cerevisiae have revealed conserved sequences within 120 base pairs (bp) which appear to be essential for centromere function. We wanted to find out whether centromeric DNA in Saccharomyces strains with different degrees of DNA sequence divergence carry the same conserved sequences or not. Bam HI DNA fragments from two S. cerevisiae strains and one Saccharomyces uvarum strain were cloned into a centromere selection vector and tested for centromere function in a S. cerevisiae laboratory strain. Fragments having centromere function were obtained at approximately equal frequencies from all three strains. Two of the S. uvarum centromeric DNAs and two of the S. cerevisiae centromeric DNAs were sequenced and shown to carry in a 120 bp region sequences essentially like those of centromeric DNA in S. cerevisiae laboratory strains. DNA hybridization to separated chromosomal DNAs revealed that the two newly determined S. cerevisiae centromeric DNA sequences belong to chromosomes V and XIII, respectively. On leave from: Department of Cell and Tumor Biology, Roswell Park Memorial Institute, Buffalo, NY 14263, USA; On leave from: The Biological Laboratories, University of Leiden, The Netherlands  相似文献   

14.
Behaviour of Candida cantarellii and Saccharomyces cerevisiae strains during the fermentation of Syrah grape must using pure, mixed and sequential yeast cultures was studied. Different kinds of inocula have been tested according to the type of culture. Inocula proportions used in mixed C. cantarellii and S. cerevisiae strains reflect the population levels in natural grape microbiota. Biomass evolution of both strains was analysed in relation to different byproduct levels. Saccharomyces cerevisiae overcame C. cantarellii in the different co-culture assays at 48 h of fermentation. The final concentration of ethanol was similar in mixed and both sequential tests and higher (from 7.8 to 10.6%) than in S. cerevisiae pure culture. In mixed and sequential cultures, the glycerol content of the final products was 44.3 to 52.8% higher than the one obtained with pure S. cerevisiae fermentation. Wine analytical profiles of experiments that involved S. cerevisiae and C. cantarellii strains differed from the pure ones mainly in acetoin, propanol and succinic acid contents. From an enological point of view, analysed byproducts are relevant. Considering this, mixed assay and the inoculation of S. cerevisiae after 3 days of pure C. cantarellii fermentation appear to be the more appropriate options to develop the particular characteristics of Syrah wines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The [URE3] prion is not conserved among Saccharomyces species   总被引:2,自引:2,他引:0       下载免费PDF全文
Talarek N  Maillet L  Cullin C  Aigle M 《Genetics》2005,171(1):23-34
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive form of the nitrogen catabolism regulator Ure2p. To determine whether the [URE3] prion is conserved in S. cerevisiae-related yeast species, we have developed genetic tools allowing the detection of [URE3] in Saccharomyces paradoxus and Saccharomyces uvarum. We found that [URE3] is conserved in S. uvarum. In contrast, [URE3] was not detected in S. paradoxus. The inability of S. paradoxus Ure2p to switch to a prion isoform results from the primary sequence of the protein and not from the lack of cellular cofactors as heterologous Ure2p can propagate [URE3] in this species. Our data therefore demonstrate that [URE3] is conserved only in a subset of Saccharomyces species. Implications of our finding on the physiological and evolutionary meaning of the yeast [URE3] prion are discussed.  相似文献   

16.
《Microbiological research》2014,169(12):907-914
The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool.  相似文献   

17.
Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20–25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.  相似文献   

18.
Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12°C and 28°C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature) at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12°C and 28°C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD+ synthesis.  相似文献   

19.
We recently showed that expressing an H2O-NADH oxidase in Saccharomyces cerevisiae drastically reduces the intracellular NADH concentration and substantially alters the distribution of metabolic fluxes in the cell. Although the engineered strain produces a reduced amount of ethanol, a high level of acetaldehyde accumulates early in the process (1 g/liter), impairing growth and fermentation performance. To overcome these undesirable effects, we carried out a comprehensive analysis of the impact of oxygen on the metabolic network of the same NADH oxidase-expressing strain. While reducing the oxygen transfer rate led to a gradual recovery of the growth and fermentation performance, its impact on the ethanol yield was negligible. In contrast, supplying oxygen only during the stationary phase resulted in a 7% reduction in the ethanol yield, but without affecting growth and fermentation. This approach thus represents an effective strategy for producing wine with reduced levels of alcohol. Importantly, our data also point to a significant role for NAD+ reoxidation in controlling the glycolytic flux, indicating that engineered yeast strains expressing an NADH oxidase can be used as a powerful tool for gaining insight into redox metabolism in yeast.  相似文献   

20.
Aim: To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. Methods and Results: For this study, fermentations were performed in sterilized grape must at 18°C. Inoculum level was 5 × 106 cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml?1. It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Conclusion: Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. Significance and Impact of the Study: This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号