首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake mechanism of homologous IgG and immune complex, and the participation of coated vesicles in this process were studied in rat peritoneal macrophages. Peroxidase-antiperoxidase (PAP) immune complex produced in rat, and purified rat IgG adsorbed to gold particles (IgG-Au) were used as ligands. Freshly collected peritoneal macrophages were preincubated with the ligands at 4 degrees C, washed, warmed up to 37 degrees C, maintained in a serum-free culture medium for 5 sec to 30 min and subsequently fixed for electron microscopy. In the IgG-Au experiments, acid phosphatase reaction was also applied to identify lysosomes, and ruthenium red to trace membranes exposed to the extracellular space. At the end of the preincubation period PAP and IgG were found randomly distributed on the external surface of the plasma membrane. After warming up the cells to 37 degrees C, the ligands bound to the plasma membrane showed a tendency to move towards deep labyrinthic invaginations of the cell surface from where they were internalized via coated pits and coated vesicles. In the initial period, these structures seemed to be the primary carriers of the ligands. In the period between 5 and 10 min, ligands were concentrated in vacuoles (endosomes) located in the deeper cytoplasm, while after 30 min, they were present in large lysosome-like or multivesicular bodies, which were found to be acid phosphatase positive.  相似文献   

2.
A key step in the sorting of endocytosed ligands from their receptors is dissociation, which is triggered by the acidic pH of endosomes. To determine whether dissociation occurs synchronously for all ligands, we compared in Chinese hamster ovary cells the intracellular dissociation of insulin, which dissociates between pH 6.3 and 7.0, with that of lysosomal hydrolases bearing the mannose 6-phosphate recognition marker (Man-6-P proteins), which dissociate around pH 5.8. Chinese hamster ovary cells were pulsed for 2 min with 125I-insulin, acid-washed to remove surface binding, and chased. During a 40-min period, about 50% of the internalized 125I-insulin was released intact via a retrocytotic pathway. Retrocytosis was not inhibited by monensin, suggesting that the release was not dependent on acidic endosomes. The remaining insulin dissociated from its receptor in an acidification-sensitive manner and was eventually degraded. Dissociation was 70% complete within 5 min of internalization. When cells were similarly incubated with 125I-Man-6-P proteins, about 35% of the internalized radioactivity was released during a 1-h chase, reflecting proteolytic maturation of the Man-6-P proteins. Dissociation of Man-6-P proteins was acidification-dependent (i.e. inhibited by monensin), and was 50% complete after about 11 min. The results indicate that acidification-dependent dissociation of ligands does not occur in a single step and suggest that multiple endocytic compartments are involved in receptor/ligand sorting.  相似文献   

3.
Two threshold values of low pH block endocytosis at different stages.   总被引:23,自引:0,他引:23       下载免费PDF全文
J Davoust  J Gruenberg    K E Howell 《The EMBO journal》1987,6(12):3601-3609
The influence of low extracellular pH on endocytosis was studied in baby hamster kidney cells. When the extracellular medium was adjusted to pH 5.7, the intracellular pH decreased within 2 min to pH 6.2 and the endocytosis of horseradish peroxidase (HRP) in the fluid phase dropped to an undetectable level. With an external pH of 6.3, the internal pH dropped to pH 6.8 and HRP was internalized at a normal rate for 5 min but accumulation during longer incubation times did not occur. Morphologically, HRP was visualized in the lumen of a subpopulation of tubular and vesicular endosomes. These observations were confirmed by subcellular fractionation studies using free flow electrophoresis. Low extracellular pH also had an effect on the endocytosis of the membrane-spanning glycoprotein G of vesicular stomatitis virus which was implanted into the plasma membrane. The internalization of G-protein was quantitated by a surface fluoroimmunoassay. The endocytosis of G-protein was not affected when the external pH was dropped to 6.3, but was reduced at an external pH of 5.7. The intracellular ATP was not depleted and the reduction of endocytosis was reversible upon return to physiological pH. Clathrin coated pits were detected by electron microscopy at the plasma membrane of the low-pH-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Complex carbohydrates and sugar receptors at the surface of eukaryotic cells are involved in recognition phenomena. Membrane lectins have been characterized, using biochemical, biological and cytological methods. Their biological activities have been assessed using labeled glycoproteins or neoglycoproteins. Specific glycoproteins or neoglycoproteins have been used to inhibit their binding capacity in both in vitro and in vivo experiments. In adults, lymphoid and myeloid cells as well as tumor cells grow in a given organ and eventually migrate and home in another organ; these phenomena are known as the homing process or metastasis, respectively. In specific cases, membrane lectins of endothelial cells recognize cell surface glycoconjugates of lymphocytes or tumor cells, while membrane lectins of lymphocytes and of tumor cells recognize glycoconjugates of extracellular matrices or of non-migrating cells. Therefore, membrane lectins are involved in cell-cell recognition phenomena. Membrane lectins are also involved in endocytosis and intracellular traffic of glycoconjugates. This property has been demonstrated not only in hepatocytes, fibroblasts, macrophages and histiocytes but also in tumor cells, monocytes, thyrocytes, etc. Upon endocytosis, membrane lectins are present in endosomes, whose luminal pH rapidly decreases. In cells such as tumor cells or macrophages, endosomes fuse with lysosomes; it is therefore possible to target cytotoxic drugs or activators, by binding them to specific glycoconjugates or neoglycoproteins through a linkage specifically hydrolyzed by lysosomal enzymes. In cells such as monocytes, the delivery of glycoconjugates to lysosomes is not active; in this case, it would be preferable to use an acid-labile linkage. Cell surface membrane lectins are developmentally regulated; they are present at given stages of differentiation and of malignant transformation. Cell surface membrane lectins usually bind glycoconjugates at neutral pH but not in acidic medium: their ligand is released in acidic specialized organelles; the internalized ligand may be then delivered into lysosomes, while the membrane lectin is recycled. Some membrane lectins, however, do bind their ligand in relatively acidic medium as in the case of thyrocytes. The presence of cell surface membrane lectins which recognize specific sugar moieties opens the way to interesting applications: for instance, isolation of cell subpopulations such as human suppressor T cells, targeting of anti-tumor or anti-viral drugs, targeting of immunomodulators or biological response modifiers.  相似文献   

5.
During endocytosis in Chinese hamster ovary (CHO) cells, Semliki Forest virus (SFV) passes through two distinct subpopulations of endosomes before reaching lysosomes. One subpopulation, defined by cell fractionation using free flow electrophoresis as "early endosomes," constitutes the major site of membrane and receptor recycling; while "late endosomes," an electrophoretically distinct endosome subpopulation, are involved in the delivery of endosomal content to lysosomes. In this paper, the pH-sensitive conformational changes of the SFV E1 spike glycoprotein were used to study the acidification of these defined endosome subpopulations in intact wild-type and acidification-defective CHO cells. Different virus strains were used to measure the kinetics at which internalized SFV was delivered to endosomes of pH less than or equal to 6.2 (the pH at which wild-type E1 becomes resistant to trypsin digestion) vs. endosomes of pH less than or equal to 5.3 (the threshold pH for E1 of the SFV mutant fus-1). By correlating the kinetics of acquisition of E1 trypsin resistance with the transfer of SFV among distinct endosome subpopulations defined by cell fractionation, we found that after a brief residence in vesicles of relatively neutral pH, internalized virus encountered pH less than or equal to 6.2 in early endosomes with a t1/2 of 5 min. Although a fraction of the virus reached a pH of less than or equal to 5.3 in early endosomes, most fus-1 SFV did not exhibit the acid-induced conformational change until arrival in late endosomes (t1/2 = 8-10 min). Thus, acidification of both endosome subpopulations was heterogeneous. However, passage of SFV through a less acidic early endosome subpopulation always preceded arrival in the more acidic late endosome subpopulation. In mutant CHO cells with temperature-sensitive defects in endosome acidification in vitro, acidification of both early and late endosomes was found to be impaired at the restrictive temperature (41 degrees C). The acidification defect was also found to be partially penetrant at the permissive temperature, resulting in the inability of any early endosomes in these cells to attain pH less than or equal to 5.3. In vitro studies of endosomes isolated from mutant cells suggested that the acidification defect is most likely in the proton pump itself. In one mutant, this defect resulted in increased sensitivity of the electrogenic H+ pump to fluctuations in the endosomal membrane potential.  相似文献   

6.
Acidification of the endosomal pathway is important for ligand and receptor sorting, toxin activation, and protein degradation by lysosomal acid hydrolases. Fluorescent probes and imaging methods were developed to measure pH to better than 0.2 U accuracy in individual endocytic vesicles in Swiss 3T3 fibroblasts. Endosomes were pulse labeled with transferrin (Tf), alpha 2-macroglobulin (alpha 2M), or dextran, each conjugated with tetramethylrhodamine and carboxyfluorescein (for pH 5-8) or dichlorocarboxyfluorescein (for pH 4-6); pH in individual labeled vesicles was measured by ratio imaging using a cooled CCD camera and novel image analysis software. Tf-labeled endosomes acidified to pH 6.2 +/- 0.1 with a t1/2 of 4 min at 37 degrees C, and remained small and near the cell periphery. Dextran- and alpha 2M-labeled endosomes acidified to pH 4.7 +/- 0.2, becoming larger and moving toward the nucleus over 30 min; approximately 15% of alpha 2M-labeled endosomes were strongly acidic (pH less than 5.5) at only 1 min after labeling. Replacement of external Cl by NO3 or isethionate strongly and reversibly inhibited acidification. Addition of ouabain (1 mM) at the time of labeling strongly enhanced acidification in the first 5 min; Tf-labeled endosomes acidified to pH 5.3 without a change in morphology. Activation of phospholipase C by vasopressin (50 nM) enhanced acidification of early endosomes; activation of protein kinase C by PMA (100 nM) enhanced acidification strongly, whereas elevation of intracellular Ca by A23187 (1 microM) had no effect on acidification. Activation of protein kinase A by CPT-cAMP (0.5 mM) or forskolin (50 microM) inhibited acidification. Lysosomal pH was not affected by ouabain or the protein kinase activators. These results establish a methodology for quantitative measurement of pH in individual endocytic vesicles, and demonstrate that acidification of endosomes labeled with Tf and alpha 2M (receptor-mediated endocytosis) and dextran (fluid-phase endocytosis) is sensitive to intracellular anion composition, Na/K pump inhibition, and multiple intracellular second messengers.  相似文献   

7.
The low-density lipoprotein receptor: ligands, debates and lore   总被引:3,自引:0,他引:3  
Like pieces belonging to a large mosaic, the structures of low-density lipoprotein receptor (LDL-R) modules have been elucidated one by one in recent years. LDL-Rs localized on hepatocytes play an important role in removing cholesterol-transporting LDL particles from the plasma by receptor-mediated endocytosis. Key steps in this process involve the LDL-R binding LDL at neutral pH at the cell surface and, after internalization, releasing it again at acidic pH in the endosomes. How the modules of the LDL-R might interact within the intact receptor to carry out ligand binding and release has been revealed by the recent crystal structure of the extracellular domain of the LDL-R.  相似文献   

8.
Receptor-mediated endocytosis of IgG and immune complexes in macrophages is terminated with digestion of the ligand in lysosomes. However, there are controversial data on whether Fc receptors are degraded together with the ligand or recycled to the cell surface. In the present study, rat peritoneal macrophages were incubated at 4 degrees C with rat peroxidase-antiperoxidase (PAP) complex for 1 h, washed and warmed up to 37 degrees C for different time periods and reincubated with new PAP at 4 degrees C. In another series of experiments, the cells were preincubated with 50 nM monensin, then cooled to 4 degrees C and reincubated with PAP in the presence of monensin. The cells were fixed and processed for electron microscopy at different stages of the experiments. Quantitative data were obtained by measuring PAP-binding membrane lengths on electron micrographs (morphometry) and by determining surface-bound PAP with spectrophotometry. In macrophages which had bound PAP at 4 degrees C and were warmed up for 5 min, the PAP was cleared from the cell surface and was found in endosome-like structures. When reincubated with PAP at 4 degrees C, such cells again bound the ligand on the cell surface, mainly in labyrinthic invaginations of the plasma membrane (synonyms: lacunae, caveolar indentations). Macrophages which had been warmed up for longer periods (30 and 60 min) showed the bound ligand all along the plasma membrane. Treatment of cells with monensin did not affect internalization of PAP, however, it decreased the ligand binding ability of macrophages considerably. These findings led us to assume an Fc receptor replenishment from a cytoplasmic pool.  相似文献   

9.
Gu J  Cheng WP  Liu J  Lo SY  Smith D  Qu X  Yang Z 《Biomacromolecules》2008,9(1):255-262
Amphiphilic polycations with a "stealth" cationic nature have been designed and synthesized by the PEGylation of polycationic amphiphile via a novel pH responsible benzoic imine linker. The linkage is stable in aqueous solution at physiological pH but cleaves in slight acidic conditions such as the extracellular environment of solid tumor and endosomes. The polymeric micelle formed from the amphiphilic "stealth" polycation contains a pH-switchable cationic surface driven by the reversible detachment/reattachment of the shielding PEG chains due to the cleavage/formation process of the imine linkage. At physiological pH, the micellar surface was shielded by the PEG corona, leading to lower cytotoxicity and less hemolysis, whereas in a mild acidic condition like in endosomes or solid tumors, the deshielding of the PEG chains exposed the positive charge on the micellar surface and retained the membrane disrupting ability. The amphiphilic "stealth" polycation is potentially useful as a drug targeting system toward tumors via endocytosis and trafficked through the endosomal pathway.  相似文献   

10.
The neonatal Fc receptor (FcRn) transports IgG across epithelial cells and recycles serum IgG. FcRn binds IgG at the acidic pH of endosomes and releases IgG at the basic pH of blood. We expressed rat FcRn in polarized MDCK cells and demonstrated that it functions in transcytosis and recycling of IgG. In the absence of IgG, FcRn is distributed predominantly apically, but redistributes to basolateral locations upon IgG addition, indicating that ligand binding induces a signal that stimulates transcytosis. FcRn transcytoses IgG more efficiently in the apical to basolateral than the reverse direction when IgG is internalized by receptor-mediated endocytosis at acidic pH or by fluid phase endocytosis at basic pH. The PI 3-kinase inhibitor wortmannin disrupts basolateral recycling and transcytosis in both directions, but only minimally reduces apical recycling. Confocal imaging and quantitative IgG transport studies demonstrate that apically-internalized IgG recycles to the apical surface mainly from wortmannin-insensitive apical early endosomes, whereas FcRn-IgG complexes that transcytose to the basolateral surface pass through downstream Rab11-positive apical recycling endosomes and transferrin-positive common endosomal compartments.  相似文献   

11.
Angiogenesis, the growth of new blood vessels, is regulated by a number of factors, including hypoxia and vascular endothelial growth factor (VEGF). Although the effects of hypoxia have been studied intensely, less attention has been given to other extracellular parameters such as pH. Thus, the present study investigates the consequences of acidic pH on VEGF binding and activity in endothelial cell cultures. We found that the binding of VEGF165 and VEGF121 to endothelial cells increased as the extracellular pH was decreased from 7.5 to 5.5. Binding of VEGF165 and VEGF121 to endothelial extracellular matrix was also increased at acidic pH. These effects were, in part, a reflection of increased heparin binding, because VEGF165 and VEGF121 showed increased retention on heparin-Sepharose at pH 5.5 compared with pH 7.5. Consistent with these findings, soluble heparin competed for VEGF binding to endothelial cells under acidic conditions. However, at neutral pH (7.5) low concentrations of heparin (0.1-1.0 microg/ml) potentiated VEGF binding. Extracellular pH also regulated VEGF activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2). VEGF165 and VEGF121 activation of Erk1/2 at pH 7.5 peaked after 5 min, whereas at pH 6.5 the peak was shifted to 10 min. At pH 5.5, neither VEGF isoform was able to activate Erk1/2, suggesting that the increased VEGF bound to the cells at low pH was sequestered in a stored state. Therefore, extracellular pH might play an important role in regulating VEGF interactions with cells and the extracellular matrix, which can modulate VEGF activity.  相似文献   

12.
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.  相似文献   

13.
Macrophages actively internalize macromolecules into endosomal vesicles containing proteases. The plant toxin, ricin A chain delivered into this pathway by receptor-mediated endocytosis, was found to be exquisitely sensitive to cleavage by these proteases. Proteolytic fragments of ricin A chain were generated within cells as early as 2-3 min after internalization. Toxin proteolysis was initiated in early endosomal vesicles, and transport to lysosomes was not required. As endosomes transit the cell, their lumenal pH drops from neutral to acidic. Previous studies in macrophages had suggested that endosomal proteolysis is dependent on vesicle acidification. Isolated endosomal vesicles containing ricin A chain catalyzed the cleavage of this protein in vitro; however, proteolysis was observed at both neutral and acidic pH. Experiments using isolated endosomes demonstrated that both cysteine and aspartyl proteases were responsible for the cleavage of ricin A chain. The cysteine protease, cathepsin B, catalyzed toxin proteolysis in endosomes between pH 4.5 and 7.0 while aspartyl protease activity was maximal below pH 5.5. Radiolabeling the lumenal contents of macrophage endosomes confirmed that both the cysteine protease, cathepsin B, and the aspartyl protease, cathepsin D, were present in these vesicles. These proteases were not present on the plasma membrane but were found in early endosomes indicating they are derived from an intracellular source. The presence of proteases with different pH optima in early endosomes suggests that processing in these vesicles may be regulated by changes in endosomal pH. This result represents an important difference in protein processing in endosomes versus lysosomes and provides new insights into the function of endosomal proteases.  相似文献   

14.
Bafilomycin A(1) (BAF) and concanamycin A (ConcA) are selective inhibitors of the H(+)-ATPases of the vacuolar system. We have examined the effects of these inhibitors on different steps in endocytic pathways in rat hepatocytes, using [(125)I]tyramine-cellobiose-labeled asialoorosomucoid ([(125)I]TC-AOM) and [(125)I]tyramine-cellobiose-labeled bovine serum albumin ([(125)I]TC-BSA) as probes for respectively receptor-mediated endocytosis and pinocytosis (here defined as fluid phase endocytosis). The effects of BAF and ConcA were in principle identical, although ConcA was more effective than BAF. The main findings were as follows. (1) BAF/ConcA reduced the rate of uptake of both [(125)I]TC-AOM and [(125)I]TC-BSA. The reduced uptake of [(125)I]TC-AOM was partly due to a redistribution of the asialoglycoprotein receptors (ASGPR) such that the number of surface receptors was reduced approximately 40% without a change in the total number of receptors. (2) BAF/ConcA at the same time increased retroendocytosis (recycling) of both probes. The increased recycling of the ligand ([(125)I]TC-AOM) is partly a consequence of the enhanced pH in endosomes, which prevents dissociation of ligand. (3) It was furthermore found that the ligand remained bound to the receptor in presence of BAF/ConcA and that the total amount of ligand molecules internalized in BAF/ConcA-treated cells was only slightly in excess of the total number of receptors. These data indicate that reduced pH in endosomes is the prime cause of receptor inactivation and release of ligand in early endosomes. (4) Subcellular fractionation experiments showed that [(125)I]TC-AOM remained in early endosomes, well separated from lysosomes in sucrose gradients. The fluid phase marker, [(125)I]TC-BSA, on the other hand, seemed to reach a later endosome in the BAF/ConcA-treated cells. This organelle coincided with lysosomes in the gradient, but hypotonic medium was found to selectively release a lysosomal enzyme (beta-acetylglucosaminidase), indicating that even [(125)I]TC-BSA remained in a prelysosomal compartment in the BAF/ConcA-treated cells. (5) Electron microscopy using horseradish peroxidase (HRP) as a fluid phase marker verified that BAF/ConcA inhibited transfer of material from late endosomes ('multivesicular bodies'). (6) BAF/ConcA led to accumulation of lactate dehydrogenase (LDH) in autophagic vacuoles, but although the drugs partly inhibited fusion between autophagosomes and lysosomes a number of autolysosomes was formed in the presence of BAF/ConcA. This observation explains the reduced buoyant density of lysosomes (revealed in sucrose density gradients). In conclusion, BAF/ConcA inhibit transfer of endocytosed material from late endosomes to lysosomes, but do not at the same time prevent fusion between autophagosomes and lysosomes.  相似文献   

15.
After the intraportal injection of EGF, the EGF receptor (EGFR) is rapidly internalized into hepatic endosomes where it remains largely receptor bound (Lai et al., 1989. J. Cell Biol. 109:2751-2760). In the present study, we evaluated the phosphotyrosine content of EGFRs at the cell surface and in endosomes in order to assess the consequences of internalization. Quantitative estimates of specific radioactivity of the EGFR in these two compartments revealed that tyrosine phosphorylation of the EGFR was observed at the cell surface within 30 s of ligand administration. However, the EGFR was also highly phosphorylated in endosomes reaching levels of tyrosine phosphorylation significantly higher than those of the cell surface receptor at 5 and 15 min after EGF injection. A 55-kD tyrosine phosphorylated polypeptide (pyp55) was observed in association with the EGFR at the cell surface within 30 s of EGF injection. The protein was also found in association with the EGFR in endosomes as evidenced by coprecipitation studies using a mAb to the EGFR as well as by coelution with the EGR in gel permeation chromatography. Limited proteolysis of isolated endosomes indicated that the tyrosine phosphorylated domains of the EGFR and associated pyp55 were cytosolically oriented while internalized EGF was intraluminal. The identification of pyp55 in association with EGFR in both hepatic plasma membranes and endosomes may be relevant to EGFR function and/or trafficking of the EGFR.  相似文献   

16.
Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.  相似文献   

17.
The acidification of various ligands was measured on a cell by cell basis for cell suspensions by correlated dual fluorescence flow cytometry. Mouse 3T3 cells were incubated with a mixture of fluorescein- and rhodamine-conjugated ligands, and the ratio of fluorescein and rhodamine fluorescence was used as a measure of endosome pH. The calibration of this ratio by both fluorometry and flow cytometry is described. Dual parameter histograms of average endosome pH per cell versus amount of internalization were calculated from this data, for samples in the absence and presence of chloroquine added to neutralize acidic cellular vesicles. The kinetics of acidification of insulin were measured and compared with previous results obtained with the chloroquine ratio technique. Rapid acidification of internalized ligand was observed both for insulin, which was mostly internalized via nonspecific pathways, and for alpha 2-macroglobulin, which was mainly internalized by specific receptor-mediated endocytosis. The average pH observed for internalized insulin was less than pH 6 within 10 min after addition of insulin. At 30 min, the average pH began to decrease to approximately pH 5, presumably because of fusion of endosomes with lysosomes.  相似文献   

18.
By fluorescence spectroscopy, the average pH within endocytic compartments was determined during endocytosis of fluorescein conjugates by macrophages and hepatocytes. In mouse macrophages and hepatocytes fluorescein conjugates taken up either in the fluid phase or by binding to cell surface receptors were rapidly transferred to an acidic compartment (pH 5-5.5). The half-time for this process was generally less than 4 min. The pH within yeast-containing phagosomes was also rapidly reduced to similar levels, following a unique and transient increase. In each case, the acid endosomal compartments involved probably do not contain lysosomal enzymes. When fluorescein conjugates of asialoglycoproteins were internalised by hepatocytes at 20 degrees C, no proteolysis occurred within the acidic endosome until the temperature was raised. Fluorescein conjugates of concanavalin A (conA) and polylysine were relatively more slowly internalised by macrophages. The half-times for uptake, estimated by fluorescence change, were comparable with the turnover time for bulk plasma membrane. The relatively high average pH experienced by these conjugates indicated that a small proportion of these non-specific cell-surface labels was always in contact with the extracellular medium.  相似文献   

19.
《The Journal of cell biology》1987,105(6):2723-2733
In the preceding paper (Yamashiro, D. J., and F. R. Maxfield. 1987. J. Cell Biol. 105:2713-2721), we have shown that there is rapid acidification of endosomal compartments to pH 6.3 by 3 min in wild-type Chinese hamster ovary (CHO) cells. In contrast, early acidification of endosomes is markedly reduced in the CHO mutants, DTF 1-5-4 and DTF 1-5- 1. Since these CHO mutants are pleiotropically defective in endocytosis (Robbins, A. R., S. S. Peng, and J. L. Marshall. 1983. J. Cell Biol. 96:1064-1071; Robbins, A. R., C. Oliver, J. L. Bateman, S. S. Krag, C. J. Galloway, and I. Mellman. 1984. J. Cell Biol. 99:1296-1308), our results are consistent with a requirement for proper acidification of early endocytic compartments in many pH-regulated endocytic processes. In this paper, by measuring the pH of morphologically distinct endosomes using fluorescence microscopy and digital image analysis, we have determined in which of the endocytic compartments the defective acidification occurs. We found that the acidification of both the para- Golgi recycling endosomes and lysosomes was normal in the CHO mutants DTG 1-5-4 and DTF 1-5-1. The mean pH of large endosomes containing either fluorescein-labeled alpha 2-macroglobulin or fluorescein- isothiocyanate dextran was only slightly less acidic in the mutant cells than in wild-type cells. However, when we examined the pH of individual large (150-250 nm) endosomes, we found that there was an increased number of endosomes with a pH greater than 6.5 in the CHO mutants when compared with wild-type cells. Heterogeneity in the acidification of large endosomes was also seen in DTF 1-5-1 by a combined null point pH method and digital image analysis technique. In addition, both CHO mutants showed a marked decrease in the acidification of the earliest endosomal compartment, a diffusely fluorescent compartment comprised of small vesicles and tubules. We suggest that the defect in endosome acidification is most pronounced in the early, small vesicular, and tubular endosomes and that this defect partially carries over to the large endosomes that are involved in the sorting and processing of ligands. The proper step-wise acidification of the different endosomes along the endocytic pathway may have an important role in the regulation of endocytic processes.  相似文献   

20.
Intracellular pH distribution and transmembrane pH profile of yeast cells   总被引:1,自引:0,他引:1  
The pH-dependent fluorescence excitation of fluorescein located intracellularly and in the vicinity of cells of the yeast Saccharomyces cerevisiae and Endomyces magnusii was used to obtain local pH values at a linear resolution 0.2 micron. Cells suspended in water or in a diluted (5 mM) acidic buffer had a relatively alkaline interior (about 7.0-7.5) with pH decreasing gradually toward the periphery and further out through the cell wall to the value of the bulk solution. In slightly alkaline weak buffers the cells also showed an alkaline center and a slightly acidic ring-shaped area, but the peripheral region close to the membrane was again alkaline with pH increasing toward the bulk solution. The heterogeneity of intracellular pH was reduced or nearly abolished in starved or antimycin-treated cell. Suspension of cells in strong (200 mM) buffer resulted within 15-20 min in a nearly homogeneous pH pattern throughout the cell, attaining pH values of 5.5-7.5, depending on the pH of the buffer. Addition of glucose with concomitant pH decrease of the extracellular medium did not change appreciably the intracellular pattern for 20-30 min, except with diethylstilbestrol (inhibitor of proton-extruding ATPase) when the cell became more acidic. It appears that the delta pH measurements between the cell as a whole and the bulk solution (as are used for the calculation of the electrochemical potential of protons in proton-driven transports) are not substantiated, the probable pH difference across the plasma membrane being substantially smaller than previously supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号