首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic regions that influence LDL particle size in African Americans are not known. We performed family-based linkage analyses to identify genomic regions that influence LDL particle size and also exert pleiotropic effects on two closely related lipid traits, high density lipoprotein cholesterol (HDL-C) and triglycerides, in African Americans. Subjects (n = 1,318, 63.0 +/- 9.5 years, 70% women, 79% hypertensive) were ascertained through sibships with two or more individuals diagnosed with essential hypertension before age 60. LDL particle size was measured by polyacrylamide gel electrophoresis, and triglyceride levels were log-transformed to reduce skewness. Genotypes were measured at 366 microsatellite marker loci distributed across the 22 autosomes. Univariate and bivariate linkage analyses were performed using a variance components approach. LDL particle size was highly heritable (h(2) = 0.78) and significantly (P < 0.0001) genetically correlated with HDL-C (rho(G) = 0.32) and log triglycerides (rho(G) = -0.43). Significant evidence of linkage for LDL particle size was present on chromosome 19 [85.3 centimorgan (cM), log of the odds (LOD) = 3.07, P = 0.0001], and suggestive evidence of linkage was present on chromosome 12 (90.8 cM, LOD = 2.02, P = 0.0011). Bivariate linkage analyses revealed tentative evidence for a region with pleiotropic effects on LDL particle size and HDL-C on chromosome 4 (52.9 cM, LOD = 2.06, P = 0.0069). These genomic regions may contain genes that influence interindividual variation in LDL particle size and potentially coronary heart disease susceptibility in African Americans.  相似文献   

2.
We performed linkage and linkage disequilibrium (LD) mapping analyses to compare the power between microsatellite and single nucleotide polymorphism (SNP) markers. Chromosome-wide analyses were performed for a quantitative electrophysiological phenotype, ttth1, on chromosome 7. Multipoint analysis of microsatellite markers using the variance component (VC) method showed the highest LOD score of 4.20 at 162 cM, near D7S509 (163.7 cM). Two-point analysis of SNPs using the VC method yielded the highest LOD score of 3.98 in the Illumina SNP data and 3.45 in the Affymetrix SNP data around 152-153 cM. In family-based single SNP and SNP haplotype LD analysis, we identified seven SNPs associated with ttth1. We searched for any potential candidate genes in the location of the seven SNPs. The SNPs rs1476640 and rs768055 are located in the FLJ40852 gene (a hypothetical protein), and SNP rs1859646 is located in the TAS2R5 gene (a taste receptor). The other four SNPs are not located in any known or annotated genes. We found the high density SNP scan to be superior to microsatellites because it is effective in downstream fine mapping due to a better defined linkage region. Our study proves the utility of high density SNP in genome-wide mapping studies.  相似文献   

3.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

4.
There have been a number of genome-wide linkage studies for adult height in recent years. These studies have yielded few well-replicated loci, and none have been further confirmed by the identification of associated gene variants. The inconsistent results may be attributable to the fact that few studies have combined accurate phenotype measures with informative statistical modelling in healthy populations. We have performed a multi-stage genome-wide linkage analysis for height in 275 adult sibling pairs drawn randomly from the Victorian Family Heart Study (VFHS), a healthy population-based Caucasian cohort. Height was carefully measured in a standardised fashion on regularly calibrated equipment. Following genome-wide identification of a peak Z-score of 3.14 on chromosome 3 at 69 cM, we performed a fine-mapping analysis of this region in an extended sample of 392 two-generation families. We used a number of variance components models that incorporated assortative mating and shared environment effects, and we observed a peak LOD score of approximately 3.5 at 78 cM in four of the five models tested. We also demonstrated that the most prevalent model in the literature gave the worst fit, and the lowest LOD score (2.9) demonstrating the importance of appropriate modelling. The region identified in this study replicates the results of other genome-wide scans of height and bone-related phenotypes, strongly suggesting the presence of a gene important in bone growth on chromosome 3p. Association analyses of relevant candidate genes should identify the genetic variants responsible for the chromosome 3p linkage signal in our population.  相似文献   

5.
Previous studies have demonstrated that low density lipoprotein cholesterol (LDL-C) concentration is influenced by both genes and environment. Although rare genetic variants associated with Mendelian causes of increased LDL-C are known, only one common genetic variant has been identified, the apolipoprotein E gene (APOE). In an attempt to localize quantitative trait loci (QTLs) influencing LDL-C, we conducted a genome-wide linkage scan of LDL-C in participants of the Strong Heart Family Study (SHFS). Nine hundred eighty men and women, age 18 years or older, in 32 extended families at three centers (in Arizona, Oklahoma, and North and South Dakota) were phenotyped for LDL-C concentration and other risk factors. Using a variance component approach and the program SOLAR, and after accounting for the effects of covariates, we detected a QTL influencing LDL-C on chromosome 19, nearest marker D19S888 at 19q13.41 [logarithm of odds (LOD) = 4.3] in the sample from the Dakotas. This region on chromosome 19 includes many possible candidate genes, including the APOE/C1/C4/C2 gene cluster. In follow-up association analyses, no significant evidence for an association was detected with the APOE*2 and APOE*4 alleles (P = 0.76 and P = 0.53, respectively). Suggestive evidence of linkage to LDL-C was detected on chromosomes 3q, 4q, 7p, 9q, 10p, 14q, and 17q. These linkage signals overlap positive findings for lipid-related traits and harbor plausible candidate genes for LDL-C.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease in which motor neurons in the brain and spinal cord degenerate by largely unknown mechanisms. ALS is familial (FALS) in 10% of cases, and the inheritance is usually dominant, with variable penetrance. Mutations in copper/zinc super oxide dismutase (SOD1) are found in 20% of familial and 3% of sporadic ALS cases. Five families with ALS and frontotemporal dementia (ALS-FTD) are linked to 9q21, whereas one family with pure ALS is linked to 18q21. We identified two large European families with ALS without SOD1 mutations or linkage to known FALS loci and conducted a genomewide linkage screen using 400 microsatellite markers. In both families, two-point LOD scores >1 and a haplotype segregating with disease were demonstrated only across regions of chromosome 16. Subsequent fine mapping in family 1 gave a maximum two-point LOD score of 3.62 at D16S3137 and a three-point LOD score of 3.85 for markers D16S415 and D16S3137. Haplotype analysis revealed no recombination > approximately 30 cM, (flanking markers at D16S3075 and D16S3112). The maximum two-point LOD score for family 2 was 1.84 at D16S415, and the three-point LOD score was 2.10 for markers D16S419 and D16S415. Definite recombination occurred in several individuals, which narrowed the shared haplotype in affected individuals to a 10.1-cM region (flanking markers: D16S3396 and D16S3112). The region shared by both families on chromosome 16q12 corresponds to approximately 4.5 Mb on the Marshfield map. Bioinformatic analysis of the region has identified 18 known genes and 70 predicted genes in this region, and sequencing of candidate genes has now begun.  相似文献   

7.
Myopia is a common, complex trait with considerable economic and social impact and, in highly affected individuals, ocular morbidity. We performed a classic twin study of 506 unselected twin pairs and inferred the heritability of refractive error to be 0.89 (95% confidence interval 0.86-0.91). A genomewide scan of 221 dizygotic twin pairs, analyzed by use of optimal Haseman-Elston regression methods implemented by use of generalized linear modeling, showed significant linkage (LOD >3.2) to refractive error at four loci, with a maximum LOD score of 6.1 at 40 cM on chromome 11p13. Evidence of linkage at this locus, as well as at the other linkage peaks at chromosomes 3q26 (LOD 3.7), 8p23 (LOD 4.1), and 4q12 (LOD 3.3), remained the same or became stronger after model fit was checked and outliers were downweighted. Examination of potential candidate genes showed the PAX6 gene directly below the highest peak at the 11p13 locus. PAX6 is fundamental to identity and growth of the eye, but reported mutations usually result in catastrophic congenital phenotypes such as aniridia. Haplotype tagging of 17 single-nucleotide polymorphisms (SNPs), which covered the PAX6 gene and had common minor allele frequencies, identified 5 SNPs that explained 0.999 of the haplotype diversity. Linkage and association analysis of the tagging SNPs showed strong evidence of linkage for all markers with a minimum chi 21 of 7.5 (P=.006) but no association. This suggests that PAX6 may play a role in myopia development, possibly because of genetic variation in an upstream promoter or regulator, although no definite association between PAX6 common variants and myopia was demonstrated in this study.  相似文献   

8.
Paget disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and previous studies have shown that the PDB-like bone dysplasia familial expansile osteolysis is caused by activating mutations in the TNFRSF11A gene that encodes receptor activator of nuclear factor kappa B (RANK); however, linkage studies, coupled with mutation screening, have excluded involvement of RANK in the vast majority of patients with PDB. To identify other candidate loci for PDB, we conducted a genomewide search in 319 individuals, from 62 kindreds with familial PDB, who were predominantly of British descent. The pattern of inheritance in the study group as a whole was consistent with autosomal dominant transmission of the disease. Parametric multipoint linkage analysis, under a model of heterogeneity, identified three chromosomal regions with LOD scores above the threshold for suggestive linkage. These were on chromosomes 2q36 (LOD score 2.7 at 218.24 cM), 5q35 (LOD score 3.0 at 189.63 cM), and 10p13 (LOD score 2.6 at 41.43 cM). For each of these loci, formal heterogeneity testing with HOMOG supported a model of linkage with heterogeneity, as opposed to no linkage or linkage with homogeneity. Two-point linkage analysis with a series of markers from the 5q35 region in another large kindred with autosomal dominant familial PDB also supported linkage to the candidate region with a maximum LOD score of 3.47 at D5S2034 (187.8 cM). These data indicate the presence of several susceptibility loci for PDB and identify a strong candidate locus for the disease, on chromosome 5q35.  相似文献   

9.
Previous studies have identified a susceptibility region for insulin-dependent (type 1) diabetes mellitus on chromosome 11q13 (IDDM4). In this study, 15 polymorphic markers were analyzed for 382 affected sibpair (ASP) families with type 1 diabetes. Our analyses provided additional evidence for linkage for IDDM4 (a peak LOD score of 3.4 at D11S913). The markers with strong linkage evidence are located within an interval of approximately 6 cM between D11S4205 and GALN. We also identified polymorphisms in two candidate genes, Fas-associated death domain protein (FADD) and galanin (GALN). Analyses of the data by transmission/disequilibrium test (TDT) and extended TDT (ETDT) did not provide any evidence for association/linkage with these candidate genes. However, ETDT did reveal significant association/linkage with the marker D11S987 (P=0.0004) within the IDDM4 interval defined by ASP analyses, suggesting that IDDM4 may be in the close proximity of D11S987.  相似文献   

10.
Atherosclerosis accounts for 75% of all deaths from cardiovascular disease and includes coronary heart disease (CHD), stroke, and other diseases of the arteries. More than half of all CHD is attributable to abnormalities in levels and metabolism of lipids. To locate genes that affect total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglycerides, genome-wide linkage scans for quantitative trait loci were performed using variance components methods as implemented in SOLAR on a large diverse sample recruited as part of the Family Blood Pressure Program. Phenotype and genetic marker data were available for 9,299 subjects in 2,953 families for total cholesterol, 8,668 subjects in 2,736 families for HDL, and 7,760 subjects in 2,499 families for triglycerides. Mean lipid levels were adjusted for the effects of sex, age, age2, age-by-sex interaction, body mass index, smoking status, and field center. HDL-C and triglycerides were further adjusted for average total alcoholic drinks per week and estrogen use. Significant linkage was found for total cholesterol on chromosome 2 (LOD = 3.1 at 43 cM) in Hispanics and for HDL-C on chromosome 3 (LOD = 3.0 at 182 cM) and 12 (LOD = 3.5 at 124 cM) in Asians. In addition, there were 13 regions that showed suggestive linkage (LOD ≥ 2.0); 7 for total cholesterol, 4 for HDL, and 2 for triglycerides. The identification of these loci affecting lipid phenotypes and the apparent congruence with previous linkage results provides increased support that these regions contain genes influencing lipid levels.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

11.
Initial genome-wide scan data provided suggestive evidence for linkage of the asthma phenotype in African-American (AA), but not Caucasian, families to chromosome 11q markers (peak at D11S1985; LOD=2). To refine this region, mapping analysis of 91 AA families (51 multiplex families and 40 asthmatic case-parent trios) was performed with an additional 17 markers flanking the initial peak linkage marker. Multipoint analyses of the 51 multiplex families yielded significant evidence of linkage with a peak non-parametric linkage score of 4.38 at marker D11S1337 (map position 68.6 cM). Furthermore, family-based association and transmission disequilibrium tests conducted on all 91 families showed significant evidence of linkage in the presence of disequilibrium for several individual markers in this region. A putative susceptibility locus was estimated to be at map position 70.8 cM with a confidence interval spanning the linkage peak. Evidence from both linkage and association analyses suggest that this region of chromosome 11 contains one or more susceptibility genes for asthma in these AA families.  相似文献   

12.
Chronic obstructive pulmonary disease (COPD) is a common, complex disease associated with substantial morbidity and mortality. COPD is defined by irreversible airflow obstruction; airflow obstruction is typically determined by reductions in quantitative spirometric indices, including forced expiratory volume at 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC). To identify genetic determinants of quantitative spirometric phenotypes, an autosomal 10-cM genomewide scan of short tandem repeat (STR) polymorphic markers was performed in 72 pedigrees (585 individuals) ascertained through probands with severe early-onset COPD. Multipoint variance-component linkage analysis (using SOLAR) was performed for quantitative phenotypes, including FEV(1), FVC, and FEV(1)/FVC. In the initial genomewide scan, significant evidence for linkage to FEV(1)/FVC was demonstrated on chromosome 2q (LOD score 4.12 at 222 cM). Suggestive evidence was found for linkage to FEV(1)/FVC on chromosomes 1 (LOD score 1.92 at 120 cM) and 17 (LOD score 2.03 at 67 cM) and to FVC on chromosome 1 (LOD score 2.05 at 13 cM). The highest LOD score for FEV(1) in the initial genomewide scan was 1.53, on chromosome 12, at 36 cM. After inclusion of 12 additional STR markers on chromosome 12p, which had been previously genotyped in this population, suggestive evidence for linkage of FEV(1) (LOD score 2.43 at 37 cM) to this region was demonstrated. These observations provide both significant evidence for an early-onset COPD-susceptibility locus on chromosome 2 and suggestive evidence for linkage of spirometry-related phenotypes to several other genomic regions. The significant linkage of FEV(1)/FVC to chromosome 2q could reflect one or more genes influencing the development of airflow obstruction or dysanapsis.  相似文献   

13.
Though autism shows strong evidence for genetic etiology, specific genes have not yet been found. We tested for linkage in a candidate region on chromosome 3q25-27 first identified in Finnish autism families [1]. The peak in this previous study was at D3S3037 (183.9 cM). We tested this region in seven affected family members and 24 of their relatives from a single large extended Utah pedigree of Northern European ancestry. A total of 70 single nucleotide polymorphisms (SNPs) were analyzed from 165 to 204 cM. The maximum NPL-all nonparametric score using SimWalk2snp was 3.53 (empirical p val ue = 0.0003) at 185.2 cM (SNP rs1402229), close to the Finnish peak. A secondary analysis using MCLINK supported this result, with a maximum of 3.92 at 184.6 cM (SNP rs1362645). We tested for alterations in a candidate gene in this region, the fragile X autosomal homolog, FXR1. No variants likely to contribute to autism were found in the coding sequence, exon-intron boundaries, or the promoter region of this gene.  相似文献   

14.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

15.
Congenital motor nystagmus linked to Xq26-q27.   总被引:5,自引:0,他引:5       下载免费PDF全文
Congenital motor nystagmus (CMN) is a hereditary disorder characterized by bilateral ocular oscillations that begin in the first 6 mo of life. It must be distinguished from those genetic disorders-such as ocular albinism (OA), congenital stationary night blindness (CSNB), and blue-cone monochromatism (BCM)-in which nystagmus accompanies a clinically apparent defect in the visual sensory system. Although CMN is presumed to arise from a neurological abnormality of fixation, it is not known whether the molecular defect is located in the eye or in the brain. It may be inherited in an autosomal dominant, autosomal recessive, or X-linked pattern. Three families with CMN inherited in an X-linked, irregularly dominant pattern were investigated with linkage and candidate gene analysis. The penetrance among obligate female carriers was 54%. Evaluation of markers in the region of the genes for X-linked OA, CSNB, and BCM revealed no evidence of linkage, supporting the hypothesis that CMN represents a distinct entity. The gene was mapped to chromosome Xq26-q27 with the following markers: GATA172D05 (LOD score 3.164; recombination fraction [theta] = 0.156), DXS1047 (LOD score 10.296; theta = 0), DXS1192 (LOD score 8.174; theta = 0.027), DXS1232 (LOD score 6.015; theta = 0.036), DXS984 (LOD score 6.695; theta = 0), and GATA31E08 (LOD score 4.940; theta = 0.083). Assessment of haplotypes and multipoint linkage analysis, which gave a maximum LOD score of 10.790 with the 1-LOD-unit support interval spanning approximately 7 cM, place the gene in a region between GATA172D05 and DXS1192. Evaluation of candidate genes CDR1 and SOX3 did not reveal mutations in affected male subjects.  相似文献   

16.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

17.
Lower plasma levels of high-density lipoprotein cholesterol (HDL-C) are associated with the metabolic syndrome (insulin resistance, obesity, hypertension) and higher cardiovascular risk. Recent association studies have suggested rare alleles responsible for very low HDL-C levels. However, for individual cardiovascular risk factors, the majority of population-attributable deaths are associated with average rather than extreme levels. Therefore, genetic factors that determine the population variation of HDL-C are particularly relevant. We undertook genome-wide and fine mapping to identify linkage to HDL-C in healthy adult nuclear families from the Victorian Family Heart Study. In 274 adult sibling pairs (average age 24 years, average plasma HDL-C 1.4 mmol/l), genome-wide mapping revealed suggestive evidence for linkage on chromosome 4 (Z score=3.5, 170 cM) and nominal evidence for linkage on chromosomes 1 (Z=2.1, 176 cM) and 6 (Z=2.6, 29 cM). Using genotypes and phenotypes from 932 subjects (233 of the sibling pairs and their parents), finer mapping of the locus on chromosome 4 strengthened our findings with a peak probability (Z score=3.9) at 169 cM. Our linkage data suggest that chromosome 4q32.3 is linked with normal population variation in HDL-C. This region coincides with previous reports of linkage to apolipoprotein AII (a major component of HDL) and encompasses the gene encoding the carboxypeptidase E, relevant to the metabolic syndrome and HDL-C. These findings are relevant for further understanding of the genetic determinants of cardiovascular risk at a population level.  相似文献   

18.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

19.
Recent reports implicate chromosomal regions linked to inter-individual variation in plasma triglycerides. We conducted genome-wide scans to replicate these linkages and/or identify other loci influencing plasma triglycerides in the NHLBI Family Heart Study (FHS). Data were obtained for 501 three-generational families. Genotyping was done by the Utah Molecular Genetics Laboratory and NHLBI Mammalian Genotyping Service; markers from both were placed on one genetic map. Analysis was done using multipoint variance components linkage. Fasting plasma triglycerides were log-transformed and age-, sex-, and field center-adjusted; suggestive linkage evidence was found on chromosome 8 (LOD=2.80 at 89 cM, marker D8S1141). Further adjustment for waist girth, BMI, diabetes, hypertension, and lipid-lowering drugs suggested linkage regions on chromosomes 6 (LOD=2.29 at 79 cM, marker D6S295) and 15 (LOD=1.85 at 43 cM, marker D15S659). Since HDL is correlated with triglycerides and because it was linked to this region on chromosome 15 in FHS, we created a composite triglyceride–HDL phenotype. The combined phenotype LOD score was 3.0 at the same marker on chromosome 15. Chromosome 15 likely harbors a susceptibility locus with an influence on triglycerides and HDL. Regions on chromosomes 6 and 8 may also contain loci contributing to inter-individual variation in plasma triglycerides.  相似文献   

20.
Obsessive compulsive disorder (OCD) has a complex etiology that encompasses both genetic and environmental factors. However, to date, despite the identification of several promising candidate genes and linkage regions, the genetic causes of OCD are largely unknown. The objective of this study was to conduct linkage studies of childhood-onset OCD, which is thought to have the strongest genetic etiology, in several OCD-affected families from the genetically isolated population of the Central Valley of Costa Rica (CVCR). The authors used parametric and non-parametric approaches to conduct genome-wide linkage analyses using 5,786 single nucleotide repeat polymorphisms (SNPs) in three CVCR families with multiple childhood-onset OCD-affected individuals. We identified areas of suggestive linkage (LOD score ≥ 2) on chromosomes 1p21, 15q14, 16q24, and 17p12. The strongest evidence for linkage was on chromosome 15q14 (LOD = 3.13), identified using parametric linkage analysis with a recessive model, and overlapping a region identified in a prior linkage study using a Caucasian population. Each CVCR family had a haplotype that co-segregated with OCD across a ~7 Mbp interval within this region, which contains 18 identified brain expressed genes, several of which are potentially relevant to OCD. Exonic sequencing of the strongest candidate gene in this region, the ryanodine receptor 3 (RYR3), identified several genetic variants of potential interest, although none co-segregated with OCD in all three families. These findings provide evidence that chromosome 15q14 is linked to OCD in families from the CVCR, and supports previous findings to suggest that this region may contain one or more OCD susceptibility loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号