首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A silver nitrate stain for nerve fibers and endings applicable to paraffin sections on the slide utilizes the properties of urea to accelerate the procedure and improve the specificity of the stain. After removal of the paraffin the sections are run through absolute, 95% and 80% alcohol and placed for 60-90 minutes at 50-60°C. in: 1% aqueous silver nitrate, 100 ml.; urea, 20-30 g.; 1g. mercuric cyanide and 1 g. picric acid in 100 ml. of distilled water, 1-3 drops. After the silver bath they are rinsed quickly in 2 changes of distilled water and reduced for 3-5 minutes at 25-30°C. in: water, 100 ml.; sodium sulfite, anhydrous, 10g.; hydroquinone, 1-2g.; urea, 20-30g. They are then washed thoroughly in 4-5 changes of distilled water, passed through graded alcohols into 80% alcohol and examined under the microscope. If nerve fibers are not distinct, the sections are returned to the same urea-silver-nitrate bath for 10-15 minutes, rinsed, reduced, washed and dehydrated as before. This process may be repeated until staining is adequate; then they are dehydrated, cleared, and mounted.

Nerve fibers show a color range from brown to black; nerve cells from yellow to brown; and the background, depending on the type of tissue and its fixation, from yellow to light brown.  相似文献   

2.
Frozen sections of formalin-fixed brains containing surgical lesions, were treated with 15% ethanol for 0.5 hr., soaked in 0.5% phosphomolybdic acid for 0.25-1.0 hr., and subsequently treated with 0.05% potassium permanganate for 4-10 min. (The duration of the latter treatment is critical and individually variable). Subsequent procedure is as follows: decolorize in a mixture of equal parts of 1% hydroquinone and 1% oxalic acid; wash thoroughly and soak sections in 1.5% silver nitrate for 20-30 min.; ammoniacal silver nitrate (silver nitrate 0.9 g., distilled water 20 ml., pure ethanol 10 ml., strong ammonia 1.8 ml., 2.5% sodium hydroxide 1.5 ml.) 0.5-1.0 min.; reduce in acidified formalin (distilled water 400 ml., pure ethanol 45 ml., 1% citric acid 13.5 ml., 10% formalin 13.5 ml.) 1 min.; wash, and pass section through 1 % sodium thiosulf ate (0.5-1.0 min.); wash thoroughly and pass sections through graded alcohols and xylene (3 changes); cover in neutral synthetic resin.  相似文献   

3.
A mounted paraffin section of material fixed in Bouin's, Carnoy's or 10% formalin is allowed to stand 15 minutes at room temperature in a 0.3% solution of 8-hydroxyquinoline in 30% ethanol. The slide, with adhering solution, is placed in 0.15 N hypochlorite (with enough KOH added to make the solution 0.015 N KOH) for 60 seconds, then (without draining) into a solution containing: 10 ml. of 0.15 N KOH; 15 g. of urea; 70 ml. of tertiary butyl alcohol, and water to make 100 ml. Here it is gently agitated for 10 sec. and then kept in a second change of the same solution for 2 min. Two changes of pure tertiary butyl alcohol, 10 sec. and 4 min.; one in aniline, 3 min.; and one of 10 sec. in xylene, complete the procedure. Permount containing 0.02% aniline is used as a mounting medium.  相似文献   

4.
Rat and rabbit brains containing surgical lesions of 5-10 days' duration were fixed in 10% formalin (neutralized with calcium carbonate) for 1 week to 6 months. Frozen sections (15-20 n) were rinsed and then soaked 7 minutes in a 1.7% solution of strong ammonia in distilled water. Subsequent treatment was as follows: rinse; 0.05% aqueous potassium permanganate 5-15 minutes; 0.5% aqueous potassium metabisulfite, 2 changes of 2.5 minutes each; wash thoroughly in 3 changes distilled water; 1.5% aqueous silver nitrate, 0.5-1.0 hr.; 1% citric acid, 5-10 sec.; 2 changes distilled water; 1% sodium thiosulfate, 30 see.; 3 changes distilled water. Each section is then processed separately. Ammoniacal silver solution (450 mg. silver nitrate in 10 ml. distilled water; add 5 ml. ethanol; let cool to room temperature; add 1 ml. strong ammonia water and 0.9 ml. of 2.5% aqueous sodium hydroxide), 0.5-1.0 min. with gentle agitation. Reduction of about 1 minute is accomplished in: distilled water, 45 ml.; ethanol, 5 ml.; 10% formalin, 1.5 ml.; 1% citric acid, 1.5 ml. Rinsing; 1% sodium thiosulfate, 10 sec.; thorough washing followed by dehydration through graded alcohol and 3 changes of xylene or toluene complete the staining process. Normal nerve fibers are slightly stained to unstained, degenerating fibers, black. The treatment in potassium permanganate is critical since too little favors overstaining of normal fibers and too much abolishes staining of degenerating fibers.  相似文献   

5.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

6.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

7.
A method of preparing bone or teeth for sectioning is described which involves the following steps: 48 hr. in 1:10 formalin; 24 hr. in 70% alcohol; decalcification for several days in 10% HNO3; rinsing and transferring to 2% potassium alum for 12 hr.; rinsing and treating with 5% NaHCO3 (or Li2CO3) for 24 hr.; washing for 12-24 hr.; then passing through ascending grades of alcohol to xylene. In the case of developing teeth, a slightly different procedure is recommended: fixation in Heidenhain's Susa till hard tissue is decalcified; 24 hr. in 96% alcohol (with three changes); 24 hr. in absolute alcohol (with one change); clearing in xylene or chloroform, and embedding in paraffin.  相似文献   

8.
The following procedure is recommended: Fix ces-todes and trematodes (while held flat between glass slides) 0.5-2.0 hr. in the following mixture: formalin, 15; acetic acid (gl.), 5; glycerol, 10; 95% ethyl alcohol, 24; distilled H2O, 46; all proportions by volume. After freeing them from the slides, wash thoroughly in running water and stain immediately thereafter. Stock staining solution: ferric ammonium alum (violet cryst.), 2 g.; distilled H2O (cold) 100 ml.; after solution, add 2 ml. concentrated H2SO4, bring to a boil; add 1 g. coelestin blue B (Nat. Aniline), boil 3-5 min.; cool and add 10 ml. absolute methyl alcohol and 10 ml. glycerol. Dilute 1 vol. with 3 vol. distilled H20 for use. Stain 5-30 min., depending on size of specimens. Wash with 2 changes 0.5 hr. each of distilled H2O, then 50% isopropyl alcohol 12-16 hr., 50% isopropyl alcohol 2 hr., followed by graded isopropyl alcohol for dehydration. Ether: ethyl alcohol (equal parts), 1 hr., is followed by embedding in celloidin in a sheet just thick enough to cover the specimens. Trim embedded specimens and dehydrate with isopropyl alcohol, 80%, 90% and absolute. Clear in beechwood creosote. Mount in balsam with cover glasses that overlap the edges of the celloidin 1-2 mm. While drying at 37°C, refill edges of mount with fresh balsam as needed. When dry, remove excess balsam and ring the edges with ordinary gloss enamel paint.  相似文献   

9.
The formula proposed by Swank and Davenport (1935) was modified and applied to human and macaque nervous material. Three groups of experiments were performed and the following observations were made. (1) Diluting the osmic acid component, without altering the relative concentration of the other constituents of the solution resulted in practically no staining of the degenerated fibers. (2) When all constituents of the staining solution were used in much lower concentration than previously suggested, enhancement of staining of the degenerating fibers occurred and the different structures of the normal tissue were more easily identified. (3) At low concentrations of osmic acid and potassium chlorate, the contrast was diminished and artifacts produced by increasing the concentration of acetic acid or formalin or both. The new formula, based on the present results, consists of osmic acid, 0.5%, 11 ml.; potassium chlorate, 1%, 16 ml.; formalin (cone), 3 ml.; acetic acid, 10%, 3 ml.; and distilled water to make 100 ml. (All solutions are aqueous). Good staining after a long period of fixation in formalin, following degeneration of 8-80 days, was obtained and the cost of staining solution greatly reduced.  相似文献   

10.
Pieces of mammalian nerves 1 to 2 cm. long were placed under moderate tension and fixed 24-48 hours in: picric acid, saturated aqueous, 90 ml.; formalin, 10 ml.; and trichloracetic acid, 25% aqueous, 2 ml. They were washed in water, cut in two and one end stained with 0.04-0.06% osmic acid solution, while the other was dehydrated, embedded in paraffin, and mounted sections from it stained with protargol. The fixing solution used was selected from a number of combinations of acidified picro-formalin as the one most likely to give satisfactory results when followed by both silver and osmic acid. The use of osmic acid solutions of less than 0.1% concentration avoided the overstaining of myelin sheaths seen frequently when stronger solutions were used with material that had been fixed previously. Protargol, 0.5% solution with fast green FCF added to make 0.05% dye in the final concentration, was used to impregnate sections for axis cylinders. Reduction and toning were done as in Bodian's method.  相似文献   

11.
As a mounting medium to follow aceto-carmine the following modification of Zirkle's is suggested: Venetian turpentine, 25 ml.; phenol, 50 ml.; propionic acid, 35 ml.; acetic acid, 10 ml.; water, 20 ml. The technic can be employed with either root-tip or pollen-mother smears, and has been used with quite a variety of plants. It is especially valuable where it is desired to make temporary mounts permanent. The method is simple, and with reasonable care no displacement of marked cells occurs.  相似文献   

12.
Extensive experimentation with protargol staining of neurons in celloidin and frozen sections of organs has resulted in the following technic: Fix tissue in 10% aqueous formalin. Cut celloidin sections IS to 25 μ, frozen sections 25 to 40 μ. Place sections for 24 hours in 50% alcohol to which 1% by volume of NH4OH has been added. Transfer the sections directly into a 1% aqueous solution of protargol, containing 0.2 to 0.3 g. of electrolytic copper foil which has been coated with a 0.5% solution of celloidin, and allow to stand for 6 to 8 hours at 37° C. Caution: In this and the succeeding step the sections must not be allowed to come in contact with the copper. From aqueous protargol, place the sections for 24 to 48 hours at 37° C. directly into a pyridinated solution of alcoholic protargol (1.0% aqueous solution protargol, 50 ml.; 95% alcohol, 50 ml.; pyridine, 0.5 to 2.0 ml.), containing 0.2 to 0.3 g. of coated copper. Rinse briefly in 50% alcohol and reduce 10 min. in an alkaline hydroquinone reducer (H3BO3, 1.4 g.; Na2SO3, anhydrous, 2.0 g.; hydroquinone, 0.3 g.; distilled water, 85 cc; acetone, 15 ml.). Wash thoroly in water and tone for 10 min. in 0.2% aqueous gold chloride, acidified with acetic acid. Wash in distilled water and reduce for 1 to 3 min. in 2% aqueous oxalic acid. Quickly rinse in distilled water and treat the sections 3 to 5 min. with 5% aqueous Na2S2O3+5H2O. Wash in water and stain overnight in Einarson's gallocyanin. Wash thoroly in water and place in 5% aqueous phosphotungstic acid for 30 min. From phosphotungstic acid transfer directly to a dilution (stock solution, 20 ml.; distilled water, 30 ml.) of the following stock staining solution: anilin blue, 0.01 g.; fast green FCF, 0.5 g.; orange G, 2.0 g.; distilled water, 92.0 ml.; glacial acetic acid, 8 ml.) and stain for 1 hour. Differentiate with 70% and 95% alcohol; pass the sections thru butyl alcohol and cedar oil; mount.  相似文献   

13.
We recently reported that compounds created around a dipiperidine scaffold demonstrated activity against Mycobacterium tuberculosis (Mtb) (Bogatcheva, E.; Hanrahan, C.; Chen, P.; Gearhart, J.; Sacksteder, K.; Einck, L.; Nacy, C.; Protopopova, M. Bioorg. Med. Chem. Lett.2010, 20, 201). To optimize the dipiperidine compound series and to select a lead compound to advance into preclinical studies, we evaluated the structure-activity relationship (SAR) of our proprietary libraries. The (piperidin-4-ylmethyl)piperidine scaffold was an essential structural element required for antibacterial activity. Based on SAR, we synthesized a focused library of 313 new dipiperidines to delineate additional structural features responsible for antitubercular activity. Thirty new active compounds with MIC 10-20 μg/ml on Mtb were identified, but none was better than the original hits of this series, SQ609, SQ614, and SQ615. In Mtb-infected macrophages in vitro, SQ609 and SQ614 inhibited more than 90% of intracellular bacterial growth at 4 μg/ml; SQ615 was toxic to these cells. In mice infected with Mtb, weight loss was completely prevented by SQ609, but not SQ614, and SQ609 had a prolonged therapeutic effect, extended by 10-15 days, after cessation of therapy. Based on in vitro and in vivo antitubercular activity, SQ609 was identified as the best-in-class dipiperidine compound in the series.  相似文献   

14.
Ruminal fungal isolates (Orpinomyces sp.; C-14, Piromyces sp.; C-15, Orpinomyces sp.; B-13 and Anaeromyces sp.; B-6), were evaluated under anoxic conditions for their effect on in vitro dry matter digestibility, neutral detergent fibre, acid detergent fibre and acid detergent lignin using rice and wheat straw as substrate. There was no significant effect of the fungal isolates on the disappearance of the substrates along with rumen liquor when compared to control. The doses of 10(6) cfu/ml of the isolate were found to have maximum degradation of straws in comparison to the doses of 10(3) cfu/ml.  相似文献   

15.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

16.
The isolation of preantral follicles from the ovaries of bovine fetuses, calves and adult cows was performed using a simple, rapid mechanical and enzyme method. The ovaries were cut into small pieces with a tissue chopper. Then, the suspension was filtered successively through 500 and 100 mum nylon mesh filters. This simple mechanical procedure resulted in large numbers of isolated preantral follicles: 2,142 +/- 254; 512 +/- 92 and 298 +/- 54 from the ovaries of bovine fetuses, calves and cows, respectively. In addition, the ovarian fragments between 100 and 500 mum were suspended in 10 ml of M199 Hepes medium plus 5% FCS and divided into 2 equal parts: one portion was used for collagenase treatment (200 U/ml) for 20 minutes, while the other served as a control. Collagenase treatment resulted in 841 +/- 161; 216 +/- 51 and 52 +/- 17 preantral follicles from fetuses, calves and cows, respectively, compared with 312 +/- 86; 52 +/- 15 and 10 +/- 2 in the control group. The use of collagenase with ovarian fragments selected by filtration as a method for increasing the rate of recovery of preantral follicles is described here.  相似文献   

17.
In the present study, we used an explant culture system of the human decidual tissues involving a new sampling method for investigating the productivity of immunoreactive prolactin (IR-PRL) for a 5 day period in labored and nonlabored deliveries. The maximal release of IR-PRL in the incubation medium for each 24 hour interval was achieved from the 2nd to the 3rd day of culture in both groups, which was 145.2 +/- 14.0 ng/ml/10 mg w.w. (mean +/- s.e.; n = 7) in the labor group and 101.5 +/- 16.3 ng/ml/10 mg w.w. (mean +/- s.e.; n = 4) in the nonlabor group. The release of IR-PRL in both groups was not significantly different for the first 3 days. However, the amount of IR-PRL released in the nonlabor group was 50 to 70% of that of the labor group. The tissue content of IR-PRL in both groups ranged between 3.0 and 5.0 ng/ml/10 mg w.w. From these results, it was concluded that 1) our explant culture system for the human decidual tissues produced considerably more IR-PRL than those previously reported and 2) productivity of IR-PRL was lower in nonlabored delivery than in labored delivery and 3) since the tissue content of IR-PRL for each 24 hour interval was very small, it should be strongly emphasized that the production and release of IR-PRL takes place simultaneously in the human decidual tissues.  相似文献   

18.
A staining mixture consisting of 0.57% methyl green and 0.1 1 % pyronin B (calculated from the actual dye content) dis- solved in glycerol, 20 ml.; 2% aqueous phenol, 100 ml.; and 95% ethanol, 25 ml., was found to be optimum for differentiating cell components containing desoxypentose and pentose nucleic acids. The stain can be used for either fresh suspensions or unfixed dried smears of tissue homogenates. Nuclei are stained bright blue, and nucleoli and cytoplasmic particles, bright pink.  相似文献   

19.
THE ENUMERATION OF LACTOBACILLI ON GRASS AND IN SILAGE   总被引:1,自引:1,他引:0  
SUMMARY: For the enumeration of lactobacilli on grass and in silage the following medium has shown promise: peptone, meat extract and glucose, 10 g. each; tomato extract, 200 ml.; yeast autolysate, 50 ml.; Tween 80, 0.5 ml.; agar, 15 g., in a final volume of 1 1. and containing acetic acid/sodium acetate buffer in 0.2M concentration; pH 5–4. The medium was adjusted to pH 5–4 before sterilization and the requisite amount of concentrated pH 5.4 acetate buffer added just before plating. Double laver plates were used.
The only other silage organisms which in this medium formed colonies comparable in size with those of lactobacilli were heterofermentative streptococci and a micrococcus.  相似文献   

20.
Several factors influencing the staining of nerve fibers with methylene blue, especially the influence of chloralhydrate and carbamylcholine chloride (as parasympathicotonics), and of some anesthetics were studied. The intestines of mouse, rat, and guinea pig were used. The following immersion technic is suggested: Tissue from animals anesthetised by chloralhydrate is immersed in: zinc free methylene blue, 0.03%; sodium tartrate, 0.5%; sodium pyruvate, 0.05% carbamylcholine, 0.00005%; 0.2 M Na2HPO4, 0.77%; 0.1 M citric acid, 0.18%; NACl, 0.79%; also an anesthetic which varies with the animal selected. Air is kept bubbling through the staining solution and microscopic examination is made at 6 min. intervals. After 0.5-1 hr. the tissue is fixed in: ammonium molyb-date, 10 g.; sucrose, 35 g.; distilled water, 100 ml.; to which is added just before use, 1% platinum chloride, 3 ml.; 2% osmic acid, 3 drops. Washing is in ice cold water and dehydration at 0°C. in Lang's fluids (varying mixtures of ethanol and n-butanol). The tissues thus prepared are stored in liquid paraffin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号