首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synecological analysis of bacterial communities from the Protva River floodplain biogeocenosis showed that all of their horizons contain spirilla, which are typical hydrobionts, and pigmented coryneform bacteria associated with the herbaceous plants of the floodplain meadows. The alluvial meadow soils of the inundated regions of the floodplain differ from the unflooded regions of the floodplain in that they have a more diverse bacterial population that is continuously distributed over the soil profile.  相似文献   

2.
Selective inhibition of substrate-induced respiration with antibiotics cycloheximide and streptomycin sulphate provided insight into eukaryotic versus prokaryotic activities in surface peat soil of three Canadian peatlands. Prokaryotic and eukaryotic communities in peatlands are important in the net sequestration of atmospheric carbon dioxide and therefore play a unique role in global carbon cycling. Selective inhibition techniques were generally successful, with a maximum non-target inhibition of only 17%. Assuming that eukaryotic and prokaryotic activities were dominated by fungi and bacteria respectively, across 3 ecologically and hydrologically diverse and spatially dispersed peatlands, we demonstrated bacterial dominance in a bog and a poor fen both with acidic and primarily Sphagnum derived peat soil and in a near pH neutral wetter rich fen with sedge peat (fungal to bacterial activity ratio = 0.31 to 0.68). These results differ in that in other acidic environments, such as conifer forest soils, fungal to bacterial activity ratios are mostly greater than 1 indicative of fungal dominance.  相似文献   

3.
4.
The chemical composition and enzymatic activity of peat soils in a river marsh ecosystem are considered. The biochemical processes were found to be most active in peat soils in an area near the river channel and in the central part of the floodplain, which were formed under rich mineral nutrition and aerobic conditions. This is explained by soil functioning conditions.  相似文献   

5.
The synecological analysis of bacterial communities from the Protva River flood-plain biogeocenosis showed that all of the horizons contain spirilla, which are typical hydrobionts, and pigmented coryneform bacteria associated with the herbaceous plants of the flood-plain meadows. The alluvial meadow soils of the inundated regions of the floodplain differed from the unflooded regions of the flood-plain in that they had a more diverse bacterial population continuously distributed over the soil profile.  相似文献   

6.
This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.  相似文献   

7.
We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging to the IncP-1beta group. The abundance of merA and IncP-1 plasmid carrying populations increased, after new mercury exposure, which could be the result of selection as well as horizontal gene exchange. The data in this study suggest a role for IncP-1 plasmids in the acclimation to mercury of surface as well as subsurface soil microbial communities.  相似文献   

8.
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.  相似文献   

9.
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.  相似文献   

10.
王好才  夏敏  刘圣恩  王燚  展鹏飞  王行 《生态学报》2021,41(7):2663-2675
了解高原泥炭沼泽湿地生态系统土壤微生物群落结构组成、多样性及空间分布特征对认识高原湿地生态特征及演化过程至关重要。利用高通量测序技术,在局域尺度上研究了四川若尔盖高原泥炭沼泽湿地土壤细菌群落结构与多样性特征。通过进一步测定土壤及植物基本理化指标,量化采样点之间的地理距离,比较了细菌群落不同成员(稀有种和丰富种)的空间周转差异,分析了土壤环境变量和空间因子对细菌群落结构的相对贡献。结果表明:若尔盖泥炭土壤细菌群落主要由绿弯菌门(Chloroflexi)(26.25%)、变形菌门(Proteobacteria)(23.21%)、厚壁菌门(Firmicutes)(10.56%)等优势物种门类组成;土壤细菌群落结构表现出较强的空间依赖关系,群落结构相似性随采样点地理距离增加而逐渐降低,细菌群落的周转速率表现为总细菌群落 > 丰富种 > 稀有种;Mantel检验结果显示,地上生物量与细菌群落呈极显著相关性(P<0.01),其中,影响稀有种空间分布特征的环境因子还包括土壤硫含量、活性磷、Mn和土壤pH值;方差分解分析表明,局域尺度上的土壤因子对若尔盖高原泥炭沼泽土壤细菌群落构建的相对贡献大于空间因子,土壤异质性是影响微生物空间分布特征的关键因素。研究为开展高原湿地泥炭土壤微生物多样性调查及揭示微生物群落构建机制提供了重要参考。  相似文献   

11.
Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition.  相似文献   

12.
Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition.  相似文献   

13.
The effects of inundation caused by the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields were evaluated. Bacterial communities were compared across three different types of soil, unflooded field (UF) soil, soil flooded for 2 weeks (short term (ST)), and soil flooded for 2 months (long term (LT)), using polymerase chain reaction-pyrosequencing of 16S rRNA genes. Acidobacteria were dominant in UF, with a relative abundance of approximately 35 %, and Proteobacteria dominated flooded soils (30–67 %). Hierarchical cluster analysis indicated that the community structure of soil bacteria in flooded soils (ST and LT) clearly differed from that in UF. Differences between LT and ST fields were rarely observed in terms of chemical properties and microbial community structure at the phylum level. However, sulfur-oxidizing bacteria (SOB) and nitrite-oxidizing bacteria (NOB) in LT tended to occur at high and low abundances, respectively. Halothiobacillus, a halotolerant SOB, was detected in all LT fields. Unexpectedly, a zeta-Proteobacteria, which had previously only been detected in marine environments, was detected in LT fields only. Our results demonstrate that the effects of the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields may have lasted at least 1 year. Furthermore, SOB, NOB, and zeta-Proteobacteria may serve as indicators of the effects of seawater inundation on microorganisms.  相似文献   

14.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

15.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

16.
The severe environmental stresses of the Arctic may have promoted unique soil bacterial communities compared with those found in lower latitude environments. Here, we present a comprehensive analysis of the biogeography of soil bacterial communities in the Arctic using a high resolution bar‐coded pyrosequencing technique. We also compared arctic soils with soils from a wide range of more temperate biomes to characterize variability in soil bacterial communities across the globe. We show that arctic soil bacterial community composition and diversity are structured according to local variation in soil pH rather than geographical proximity to neighboring sites, suggesting that local environmental heterogeneity is far more important than dispersal limitation in determining community‐level differences. Furthermore, bacterial community composition had similar levels of variability, richness and phylogenetic diversity within arctic soils as across soils from a wide range of lower latitudes, strongly suggesting a common diversity structure within soil bacterial communities around the globe. These results contrast with the well‐established latitudinal gradients in animal and plant diversity, suggesting that the controls on bacterial community distributions are fundamentally different from those observed for macro‐organisms and that our biome definitions are not useful for predicting variability in soil bacterial communities across the globe.  相似文献   

17.
Bacteria colonize reactive minerals in soils where they contribute to mineral weathering and transformation. So far, the specificity, patterns and dynamics of mineral colonization have rarely been assessed under natural conditions. High throughput Illumina sequencing was employed to investigate the bacterial communities assembling on illite and goethite during exposure to natural grassland soils. Two different types of organic carbon sources, simple carbon compounds representing root exudates and detritus of two dominant grassland plant species were applied, and their effects on the temporal dynamics of bacterial communities were investigated. The observed temporal patterns suggest that the surfaces of de novo exposed minerals in soils drive the establishment of bacterial communities and override the effect of the type of carbon sources and of other environmental properties. Mineral colonization was selective and specific bacterial sequence variants exhibited distinct colonization patterns, among which early, intermittent, and late colonizers could be distinguished. Based on our results, soil minerals are not only colonized by specific bacterial communities but enable a succession of different bacterial communities. Our results thereby expand the concept of the mineralosphere and provide novel insights into mechanisms of community assembly in the soil ecosystem.  相似文献   

18.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

19.
Competition is a major type of interaction between fungi and bacteria in soil and is also an important factor in suppression of plant diseases caused by soil-borne fungal pathogens. There is increasing attention for the possible role of volatiles in competitive interactions between bacteria and fungi. However, knowledge on the actual role of bacterial volatiles in interactions with fungi within soil microbial communities is lacking. Here, we examined colonization of sterile agricultural soils by fungi and bacteria from non-sterile soil inoculums during exposure to volatiles emitted by soil-derived bacterial communities. We found that colonization of soil by fungi was negatively affected by exposure to volatiles emitted by bacterial communities whereas that of bacteria was barely changed. Furthermore, there were strong effects of bacterial community volatiles on the assembly of fungal soil colonizers. Identification of volatile composition produced by bacterial communities revealed several compounds with known fungistatic activity. Our results are the first to reveal a collective volatile-mediated antagonism of soil bacteria against fungi. Given the better exploration abilities of filamentous fungi in unsaturated soils, this may be an important strategy for bacteria to defend occupied nutrient patches against invading fungi. Another implication of our research is that bacterial volatiles in soil atmospheres can have a major contribution to soil fungistasis.  相似文献   

20.
Plant roots select non‐random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short‐term additions of N, a growth‐limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号