共查询到20条相似文献,搜索用时 0 毫秒
1.
Single molecule experiments have opened promising new avenues of investigations in biology, but the quantitative interpretation of results remains challenging. In particular, there is a need for a comparison of such experiments with theoretical methods. We experimentally determine the activation free energy for single molecule interactions between two synaptic proteins syntaxin 1A and synaptobrevin 2, using an atomic force microscope and the Jarzynski equality of nonequilibrium thermodynamics. The value obtained is shown to be reasonably consistent with that from single molecule reaction rate theory. The temperature dependence of the spontaneous dissociation lifetime along with different pulling speeds is used to confirm the approach to the adiabatic limit. This comparison of the Jarzynski equality for intermolecular interactions extends the procedure for calculation of activation energies in nonequilibrium processes. 相似文献
2.
Combining optical tweezers with single molecule fluorescence offers a powerful technique to study the biophysical properties of single proteins and molecules. However, such integration into a combined, coincident arrangement has been severely limited by the dramatic reduction in fluorescence longevity of common dyes under simultaneous exposure to trapping and fluorescence excitation beams. We present a novel approach to overcome this problem by alternately modulating the optical trap and excitation beams to prevent simultaneous exposure of the fluorescent dye. We demonstrate the dramatic reduction of trap-induced photobleaching effects on the common single molecule fluorescence dye Cy3, which is highly susceptible to this destructive pathway. The extension in characteristic fluorophore longevity, a 20-fold improvement when compared to simultaneous exposure to both beams, prolongs the fluorescence emission to several tens of seconds in a combined, coincident arrangement. Furthermore, we show that this scheme, interlaced optical force-fluorescence, does not compromise the trap stiffness or single molecule fluorescence sensitivity at sufficiently high modulation frequencies. Such improvement permits the simultaneous measurement of the mechanical state of a system with optical tweezers and the localization of molecular changes with single molecule fluorescence, as demonstrated by mechanically unzipping a 15-basepair DNA segment labeled with Cy3. 相似文献
3.
In AFM-based single molecule force spectroscopy, it is tacitly assumed that the pulling direction coincides with the end-to-end vector of the molecule fragment being stretched. By systematically varying the position of the attachment point on the substrate relative to the AFM tip, we investigate empirically and theoretically the effect of the pulling geometry on force-extension characteristics of double-stranded DNA. We find that increasing the pulling angle can significantly lower the force of the characteristic overstretching transition and increase the width of the plateau feature beyond the canonical 70%. These effects, when neglected, can adversely affect the interpretation of measured force-extension relationships. We quantitatively evaluate force and extension errors originating from this "pulling angle effect" and stress the need to correct the pulling geometry when stretching rigid molecules with an AFM. 相似文献
4.
Rudolf Rigler 《Biochemical and biophysical research communications》2010,396(1):170-4392
An overview is presented which describes the development of fluorescence spectroscopy at the cellular level from its beginning as a quantitative tool to determine the content of cellular components to its present use. Analysis of individual biomolecules, their transport and kinetics within a single cell is now possible. 相似文献
5.
Korn K Gardellin P Liao B Amacker M Bergström A Björkman H Camacho A Dörhöfer S Dörre K Enström J Ericson T Favez T Gösch M Honegger A Jaccoud S Lapczyna M Litborn E Thyberg P Winter H Rigler R 《Nucleic acids research》2003,31(16):e89
Recent developments of single molecule detection techniques and in particular the introduction of fluorescence correlation spectroscopy (FCS) led to a number of important applications in biological research. We present a unique approach for the gene expression analysis using dual-color cross-correlation. The expression assay is based on gene-specific hybridization of two dye-labeled DNA probes to a selected target gene. The counting of the dual-labeled molecules within the solution allows the quantification of the expressed gene copies in absolute numbers. As detection and analysis by FCS can be performed at the level of single molecules, there is no need for any type of amplification. We describe the gene expression assay and present data demonstrating the capacity of this novel technology. In order to prove the gene specificity, we performed experiments with gene-depleted total cDNA. The biological application was demonstrated by quantifying selected high, medium and low abundant genes in cDNA prepared from HL-60 cells. 相似文献
6.
Kasai RS Suzuki KG Prossnitz ER Koyama-Honda I Nakada C Fujiwara TK Kusumi A 《The Journal of cell biology》2011,192(3):463-480
Receptor dimerization is important for many signaling pathways. However, the monomer-dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein-coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer-monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/μm(2), with a dissociation and 2D association rate constant of 11.0 s(-1) and 3.1 copies/μm(2)s(-1), respectively. At physiological expression levels of ~2.1 receptor copies/μm(2) (~6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly. 相似文献
7.
DNA is partly denatured in vitro by applying a force that mechanically separates the two strands of the double helix. Sudden reduction of the imposed displacement triggers spontaneous reannealing of the molecule. The corresponding force signals are measured by optical trapping interferometry for backward steps of various amplitudes and base sequence intervals. The measured signals frequently show plateaus of varying duration at discrete values that are dependent on the base sequence. Additional measurements are performed with proteins bound to the double helix. When the opening fork encounters such a protein during mechanical unzipping, force increases until the protein is ejected. This ejection induces fast release of tension and fast unzipping. Comparing our different measurements, we find that both DNA unzipping and the relaxation of tension in DNA are faster than the formation of the double helix. 相似文献
8.
Assaf Grunwald Moran Dahan Anna Giesbertz Adam Nilsson Lena K. Nyberg Elmar Weinhold Tobias Ambj?rnsson Fredrik Westerlund Yuval Ebenstein 《Nucleic acids research》2015,43(18):e117
Rapid characterization of unknown biological samples is under the focus of many current studies. Here we report a method for screening of biological samples by optical mapping of their DNA. We use a novel, one-step chemo-enzymatic reaction to covalently bind fluorophores to DNA at the four-base recognition sites of a DNA methyltransferase. Due to the diffraction limit of light, the dense distribution of labels results in a continuous fluorescent signal along the DNA. The amplitude modulations (AM) of the fluorescence intensity along the stretched DNA molecules exhibit a unique molecular fingerprint that can be used for identification. We show that this labelling scheme is highly informative, allowing accurate genotyping. We demonstrate the method by labelling the genomes of λ and T7 bacteriophages, resulting in a consistent, unique AM profile for each genome. These profiles are also successfully used for identification of the phages from a background phage library. Our method may provide a facile route for screening and typing of various organisms and has potential applications in metagenomics studies of various ecosystems. 相似文献
9.
D'Antoni CM Fuchs M Harris JL Ko HP Meyer RE Nadel ME Randall JD Rooke JE Nalefski EA 《Analytical biochemistry》2006,352(1):97-109
Single molecule detection of target molecules specifically bound by paired fluorescently labeled probes has shown great potential for sensitive quantitation of biomolecules. To date, no reports have rigorously evaluated the analytical capabilities of a single molecule detection platform employing this dual-probe approach or the performance of its data analysis methodology. In this paper, we describe a rapid, automated, and sensitive multicolor single molecule detection apparatus and a novel extension of coincident event counting based on detection of fluorescent probes. The approach estimates the number of dual-labeled molecules of interest from the total number of coincident fluorescent events observed by correcting for unbound probes that randomly pass through the interrogation zone simultaneously. Event counting was evaluated on three combinations of distinct fluorescence channels and was demonstrated to outperform conventional spatial cross-correlation in generating a wider linear dynamic response to target molecules. Furthermore, this approach succeeded in detecting subpicomolar concentrations of a model RNA target to which fluorescently labeled oligonucleotide probes were hybridized in a complex background of RNA. These results illustrate that the fluorescent event counting approach described represents a general tool for rapid sensitive quantitative analysis of any sample analyte, including nucleic acids and proteins, for which pairs of specific probes can be developed. 相似文献
10.
Guha R Dexheimer TS Kestranek AN Jadhav A Chervenak AM Ford MG Simeonov A Roth GP Thomas CJ 《Bioorganic & medicinal chemistry》2011,19(13):4127-4134
Kinetic solubility measurements using prototypical assay buffer conditions are presented for a ~58,000 member library of small molecules. Analyses of the data based upon physical and calculated properties of each individual molecule were performed and resulting trends were considered in the context of commonly held opinions of how physicochemical properties influence aqueous solubility. We further analyze the data using a decision tree model for solubility prediction and via a multi-dimensional assessment of physicochemical relationships to solubility in the context of specific 'rule-breakers' relative to common dogma. The role of solubility as a determinant of assay outcome is also considered based upon each compound's cross-assay activity score for a collection of publicly available screening results. Further, the role of solubility as a governing factor for colloidal aggregation formation within a specified assay setting is examined and considered as a possible cause of a high cross-assay activity score. The results of this solubility profile should aid chemists during library design and optimization efforts and represent a useful training set for computational solubility prediction. 相似文献
11.
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD. 相似文献
12.
Alex E. Knight Gregory Mashanov Justin E. Molloy 《European biophysics journal : EBJ》2005,35(1):89-89
Recent technological advances in lasers and optical detectors have enabled a variety of new, single molecule technologies to be developed. Using intense and highly collimated laser light sources in addition to super-sensitive cameras, the fluorescence of single fluorophores can now be imaged in aqueous solution. Also, laser optical tweezers have enabled the piconewton forces produced by pair of interacting biomolecules to be measured directly. However, for a researcher new to the field to begin to use such techniques in their own research might seem a daunting prospect. Most of the equipment that is in use is custom-built. However, most of the equipment is essence fairly simple and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on those practical aspects which are not particularly well covered in the literature, and aims to provide an overview of the field as a whole with references and web links to more detailed sources elsewhere. Indeed, the opportunity to publish an article such as this on the Internet affords many new opportunities (and more space!) for presenting scientific ideas and information. For example, we have illustrated the nature of optical trap data with an interactive Java simulation; provided links to relevant web sites and technical documents, and included a large number of colour figures and plots. Our group’s research focuses on molecular motors, and the bias of this article reflects this. It turns out that molecular motors have been a paradigm (or prototype) for single molecule research and the field has seen a rapid development in the techniques. It is hoped that the methods described here will be broadly applicable to other biological systems.This is an interactive contribution, which can be accessed at: 相似文献
13.
14.
Yanagida T Iwaki M Ishii Y 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1500):2123-2134
Single molecule imaging and manipulation are powerful tools in describing the operations of molecular machines like molecular motors. The single molecule measurements allow a dynamic behaviour of individual biomolecules to be measured. In this paper, we describe how we have developed single molecule measurements to understand the mechanism of molecular motors. The step movement of molecular motors associated with a single cycle of ATP hydrolysis has been identified. The single molecule measurements that have sensitivity to monitor thermal fluctuation have revealed that thermal Brownian motion is involved in the step movement of molecular motors. Several mechanisms have been suggested in different motors to bias random thermal motion to directional movement. 相似文献
15.
In this paper, we report on the performance of electrophoretical separation and laser-induced fluorescence (LIF) detection of dyes and fluorescently labeled biomolecules in poly(dimethylsiloxane) (PDMS) microdevices. The dyes fluorescein and fluorescein isothiocyanate (FITC) have been separated effectively in nM concentrations. Fluorescein injections gave linear concentration response in the range from 4 to 100 pM. As ultimate detection sensitivity, 100 fM injected fluorescein was obtained. Further, 100 fM injected fluorescein could be detected. This is to our knowledge the smallest electrokinetically injected dye concentration detected on a microchip. Injection studies of fluorescently labeled avidin revealed a theoretical detection limit of 25 nM for laser-induced fluorescence detection in good agreement with separations in glass chips. Furthermore, the injection of several and even one single DNA molecule using a PDMS cross injector has been demonstrated as well as free solution separation of lambda- and T2-DNA (60 pM each) in periodically structured channels. 相似文献
16.
Protein complexes assembled on membrane surfaces regulate a wide array of signaling pathways and cell processes. Thus, a molecular understanding of the membrane surface diffusion and regulatory events leading to the assembly of active membrane complexes is crucial to signaling biology and medicine. Here we present a novel single molecule diffusion analysis designed to detect complex formation on supported lipid bilayers. The usefulness of the method is illustrated by detection of an engineered, heterodimeric complex in which two membrane-bound pleckstrin homology (PH) domains associate stably, but reversibly, upon Ca(2+)-triggered binding of calmodulin (CaM) to a target peptide from myosin light chain kinase (MLCKp). Specifically, when a monomeric, fluorescent PH-CaM domain fusion protein diffusing on a supported bilayer binds a dark MLCKp-PH domain fusion protein, the heterodimeric complex is observed to diffuse nearly 2-fold more slowly than the monomer because both of its twin PH domains can simultaneously bind to the viscous bilayer. In a mixed population of monomers and heterodimers, the single molecule diffusion analysis resolves, identifies and quantitates the rapidly diffusing monomers and slowly diffusing heterodimers. The affinity of the CaM-MLCKp interaction is measured by titrating dark MLCKp-PH construct into the system, while monitoring the changing ratio of monomers and heterodimers, yielding a saturating binding curve. Strikingly, the apparent affinity of the CaM-MLCKp complex is ~10(2)-fold greater in the membrane system than in solution, apparently due to both faster complex association and slower complex dissociation on the membrane surface. More broadly, the present findings suggest that single molecule diffusion measurements on supported bilayers will provide an important tool for analyzing the 2D diffusion and assembly reactions governing the formation of diverse membrane-bound complexes, including key complexes from critical signaling pathways. The approach may also prove useful in pharmaceutical screening for compounds that inhibit membrane complex assembly or stability. 相似文献
17.
Single molecule measurements of titin elasticity 总被引:3,自引:0,他引:3
Titin, with a massive single chain of 3--4MDa and multiple modular motifs, spans the half-sarcomere of skeletal and cardiac muscles and serves important, multifaceted functions. In recent years, titin has become a favored subject of single molecule observations by atomic force microscopy (AFM) and laser optical trap (LOT). Here we review these single titin molecule extension studies with an emphasis on understanding their relevance to titin elasticity in muscle function. Some fundamental aspects of the methods for single titin molecule investigations, including the application of dynamic force, the elasticity models for filamentous titin motifs, the technical foundations and calibrations of AFM and LOT, and titin sample preparations are provided. A chronological review of major publications on recent single titin extension observations is presented. This is followed by summary evaluations of titin domain folding/unfolding results and of elastic properties of filamentous titin motifs. Implications of these single titin measurements for muscle physiology/pathology are discussed and forthcoming advances in single titin studies are anticipated. 相似文献
18.
Sub-angstrom conformational changes of a single molecule captured by AFM variance analysis
下载免费PDF全文

A system's equilibrium variance can be analyzed to probe its underlying dynamics at higher resolution. Here, using single-molecule atomic-force microscope techniques, we show how the variance in the length of a single dextran molecule can be used to establish thermodynamic equilibrium and to detect conformational changes not directly observable with other methods. Dextran is comprised of a chain of pyranose rings that each undergoes an Angstrom-scale transition from a chair to boat conformation under a stretching force. Our analysis of the variance of the molecule's fluctuations verifies equilibrium throughout the force-extension curve, consistent with the expected thermodynamic ensemble. This validates further analysis of the variance in the transition region, which reveals an intermediate conformation between the chair and the boat on the sub-Angstrom scale. Our test of thermal equilibrium as well as our variance analysis can be readily extended to a wide variety of molecules, including proteins. 相似文献
19.
Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events
下载免费PDF全文

Virtually all measurements of biochemical kinetics have been derived from macroscopic measurements. Single-molecule methods can reveal the kinetic behavior of individual molecular complexes and thus have the potential to determine heterogeneous behaviors. Here we have used single-molecule fluorescence resonance energy transfer to determine the kinetics of binding of SNARE (soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor) complexes to complexin and to a peptide derived from the central SNARE binding region of complexin. A Markov model was developed to account for the presence of unlabeled competitor in such measurements. We find that complexin associates rapidly with SNARE complexes anchored in lipid bilayers with a rate constant of 7.0 × 106 M−1 s−1 and dissociates slowly with a rate constant of 0.3 s−1. The complexin peptide associates with SNARE complexes at a rate slower than that of full-length complexin (1.2 × 106 M−1 s−1), and dissociates much more rapidly (rate constant >67 s−1). Comparison of single-molecule fluorescence resonance energy transfer measurements made using several dye attachment sites illustrates that dye labeling of complexin can modify its rate of unbinding from SNAREs. These rate constants provide a quantitative framework for modeling of the cascade of reactions underlying exocytosis. In addition, our theoretical correction establishes a general approach for improving single-molecule measurements of intermolecular binding kinetics. 相似文献