首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

2.
The Ca(2+)-binding epidermal growth factor (cbEGF)-like module is a structural component of numerous diverse proteins and occurs almost exclusively within repeated motifs. Notch-1, a fundamental receptor for cell fate decisions, contains 36 extracellular EGF modules in tandem, of which 21 are potentially Ca(2+)-binding. We report the Ca(2+)-binding properties of EGF11-12 and EGF10-13 from human Notch-1 (hNEGF11-12 and hNEGF10-13), modules previously shown to support Ca(2+)-dependent interactions with the ligands Delta and Serrate. Ca2+ titrations in the presence of chromophoric chelators, 5,5''-Br2BAPTA and 5-NBAPTA, gave two binding constants for hNEGF11-12, Kd1 = 3.4 x 10(-5) M and Kd2 > 2.5 x 10(-4) M. The high-affinity site was found to be localized to hNEGF12. Titration of hNEGF10-13 gave three binding constants, Kd1 = 3.1 x 10(-6) M, Kd2 = 1.6 x 10(-4) M, and Kd3 > 2.5 x 10(-4) M, demonstrating that assembly of EGF modules in tandem can increase Ca2+ affinity. The highest affinity sites in hNEGF11-12 and hNEGF10-13 had 10 to 100-fold higher affinity than reported for EGF32-33 and EGF25-31, respectively, from fibrillin-1, a connective tissue protein with 43 cbEGF modules. A model of hNEGF11-12 based on fibrillin-1 EGF32-33 demonstrates electronegative potential that could contribute to the higher affinity of the Ca(2+)-binding site in hNEGF12. These data demonstrate that the Ca2+ affinity of cbEGF repeats can be highly variable among different classes of cbEGF containing proteins.  相似文献   

3.
Calcium binding sites with high and low affinity are revealed while only sites with high affinity to the calcium ion (Kd = 5.8 x 10(-6) M) are found in the glycoprotein component of the complex. A model of the glycoprotein-peptide complex functioning in the system of electrogenic transport of Ca2+ in mitochondria is suggested.  相似文献   

4.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

5.
Calcium ions occupy low (n congruent to 10; Kd congruent to 1 mM) and high (n = 3; Kd congruent to 1 microM) affinity sites on fibrinogen and facilitate fibrin monomer polymerization. We have previously localized two of the three high affinity Ca2+ sites to gamma 311-gamma 336. However, optimal enhancement of fibrin monomer polymerization occurs only at physiological millimolar Ca2+ concentrations which are two orders of magnitude higher than the concentration required for occupancy of the high affinity Ca2+-binding sites. In this study, we show that removal of fibrinogen sialic acid residues results in loss of low affinity Ca2+-binding sites. Clotting of asialofibrinogen appears to be Ca2+-independent and results in fiber bundles thicker in diameter than normal fibrin bundles as determined by turbidometry and scanning and transmission electron microscopy. By using a Ca2+-sensitive electrode, free sialic acid is shown to bind Ca2+ (Kd congruent to 1 mM). These observations suggest that the high affinity fibrinogen D-domain Ca2+-binding sites may play a role in the tertiary structure of the D-domain, whereas, sialic acid residues are low affinity sites whose occupancy by Ca2+ at physiological calcium concentration facilitates fibrin polymerization.  相似文献   

6.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

7.
Nephrocalcin inhibits the growth of calcium oxalate monohydrate crystals in the mammalian kidney. Isoforms A and B contain three equivalents of gamma-carboxyglutamic acid (Gla) residues implicated in Ca2+-binding and exhibit strong inhibitor properties and high Ca2+-binding affinity (Kd approximately 10(-8) M). Isoforms C and D lack these properties and exhibit low Ca2+-binding affinity (Kd approximately 10(-6) M). With VO2+ as a structural probe, electron paramagnetic resonance (EPR) studies of the Ca2+-binding sites of isoforms B and D showed that VO2+ binds competitively with a metal ion:protein stoichiometry of 4:1. EPR spectral parameters of the VO2+ ion were consistent with only equatorial oxygen-donor ligands. EPR and angle-selected electron nuclear double resonance (ENDOR) spectra showed two equatorially positioned, metal coordinating waters in isoform D while in isoform B no ligands undergoing hydrogen exchange were found. Since isoform D showed no evidence for axially coordinated water, similarly to isoform B, it is likely that the protein residues occupying the axial sites are identical in both proteins. ENDOR spectra of VO2+-complexes of isoforms B and D were compared to spectra of the VO2+-complex with alpha-ethylmalonic acid (EMA), a molecular mimic of Gla. Spectra of the VO2+-complex of EMA showed axial water located trans to the V=O bond and outer shell water hydrogen-bonded to the vanadyl oxygen, consistent with the X-ray structure of Ca(EMA)2. We, therefore, conclude that the spatial disposition of carboxylate groups of Gla residues coordinating Ca2+ in isoforms A and B must differ from that observed in the crystal structure of Ca(EMA)2.  相似文献   

8.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

9.
alpha 2-Macroglobulin (alpha 2M) is one of the major cadmium-binding proteins of human plasma. As determined with equilibrium dialysis, alpha 2M bound 4.6 (+/- 0.7) mol Cd2+ per mol protein with an apparent dissociation constant of (9.6 (+/- 5.0] X 10(-7) M. Methylamine-modified alpha 2M (alpha 2M-Me) had a similar affinity for Cd2+ (Kd,app = 5.3 X 10(-7) M), but fewer binding sites. Cadmium produced a small increase in the amidolytic activity of trypsin in the presence of alpha 2M and soybean trypsin inhibitor. Using the binding parameters determined from the equilibrium dialysis studies, the Cd2+ concentration which produced a half-maximal increase in amidolytic activity corresponded to saturation of all Cd2+-binding sites in one-half of the alpha 2M molecules. From these results, a model is proposed in which one Cd2+-binding site is present in each of the four polypeptide chains which compose alpha 2M.  相似文献   

10.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

11.
The binding of 125I-labeled human prothrombin to native and papain-treated tissue thromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard plots for the protein binding suggest the presence at thromboplastin surface of two types of binding sites, high affinity [Kd(app) = 7.4.10(-8) M] and moderate affinity [Kd(app) = 7.9.10(-5) M]. The removal of Ca2+ did not influence the Kd (values for these) sites but markedly reduced their number. Proteolysis by papain caused a decrease in the affinity of high affinity sites without affecting the Kd values of the moderate affinity sites yet caused a proportional increase in the number of both high and moderate affinity sites in the presence of Ca2+. At low prothrombin concentrations a positive cooperativity of protein binding at high affinity sites in the presence of Ca2+ was observed.  相似文献   

12.
To clarify the function of ACTH receptors, the actions of ACTH on cyclic AMP formation, Ca2+-influx across cell membrane, and corticoidogenesis were examined using dispersed adrenocortical cells prepared from the rat adrenal gland. 1) There are two types of ACTH receptors from Scatchard analysis of 125I-ACTH1-24 binding to the cell, the one receptor is of high affinity and low capacity (dissociation constant (Kd1) = 2.6 x 10(-19) M and 7,350 sites per cell), and the other one is of low affinity and high capacity (dissociation constant (Kd2) = 7.1 x 10(-9)M and 57,400 sites per cell). 2) Both apparent dissociation constants derived from the effects of ACTH on corticoidogenesis and Ca2+ influx well correspond with Kd1 of the high affinity receptor, 3) Apparent dissociation constant obtained from the effect of ACTH on cyclic AMP formation is in good agreement with Kd2 of the low affinity receptor. Thus it could be deduced from these data that the high affinity receptor is concerned with an increased Ca2+-influx to regulate corticoidogenesis at physiological levels of ACTH, whereas the low affinity receptor is coupled to adenylate cyclase at supraphysiological concentrations of ACTH.  相似文献   

13.
EPR studies of Mn2+ binding to bovine pancreatic deoxyribonuclease I show that the enzyme can bind three Mn2+ ions at pH 7.5 and 2 degrees. Two sites bind Mn2+ strongly, with a Kd of 10(-4)M, and the third binds Mn2+ weakly, with a Kd of 10(-3)M. Ca2+ competes with the two strong sites, whereas Mg2+ competes only with one of them, indicating that both sites are not equivalent. Mn2+ binding to DNA has been confirmed by EPR measurements. Two types of sites, with different affinities for Mn2+ binding, were found on DNA molecules, one with a Kd of 1.2 times 10(-4)M and the other with a Kd of 10(-3)M. Mg2+ ions can displace Mn2+ from the high affinity sites, but not from the low affinity sites. These results suggest the Mn2+ binds not only to the phosphate groups, but also to the electron donor groups of the base rings.  相似文献   

14.
Sodium ion interaction with sarcoplasmic reticulum (SR) membranes leads to considerable alterations of the [23Na]NMR lineshape. Na+ binding to SR in the presence of Ca2+ and H+ is well described by a model which postulates a competitive ion binding to high and low affinity sites of Ca2+-ATPase. The dissociation constant, Kd, for high and low affinity sites is 5 and 10 mM, respectively, for Na+ and (3-5).10(-8) and 1.5.10(-3) M, respectively, for Ca2+. The pK value for high and low affinity sites is 7.3 and 6.1, respectively. Other alkaline metal ions compete with Na+ for the low affinity sites of Ca2+-ATPase; their affinities decrease in the following order: Na+ = K+ greater than Rb+ greater than Cs greater than Li+. Some of the Na+ binding sites (approximately 10%) do not interact with Ca2+.  相似文献   

15.
In receptor-rich membrane fragments from Torpedo, acetylcholine binds, in the presence of 70 muM Tetram, to a homogeneous population of high-affinity sites with Kd = (3.4 +/- 0.8) x 10(08) M. Dissolution of these membrane fragments by sodium cholate causes a decrease of affinity associated with the appearance of medium-affinity (Kd approximately 10(-7) M) and low-affinity (Kd greater than or equal to 10(-6) M) sites. Dissolution by neutral detergents Triton X-100 or Emulphogene preserves the high affinity of the acetylcholine binding sites. In all the soluble states of the receptor protein, Ca2+ ions and local anaesthetics no longer enhance the affinity for acetylcholine. Elimination of sodium cholate by dilution leads to the reassociation of the receptor protein, the recovery of high-affinity sites and the control by Ca2+ ions and local anaesthetics. Purification by affinity chromatography of the receptor protein in Triton X-100 is accompanied by a conversion of a majority of the acetylcholine sites into their state of low affinity. High-affinity sites can no longer be recovered by detergent dilution from these low-affinity ones.  相似文献   

16.
The Ca2+-binding protein (HCaBP) of the human placenta was studied with respect to its biochemical properties, tissue and cellular distribution, and possible involvement in placental Ca2+ transport. Optimal Ca2+ binding by the HCaBP occurs at pH 7-8 and in 100 mM-Na+ and 3 mM-Ca2+. The HCaBP possesses at least 10 Ca2+-binding sites with a Kd of 5 X 10(-6) M ([Ca2+]). Highly specific rabbit-derived anti-HCaBP antibodies were used for HCaBP immunoquantification and immunohistochemistry, which revealed that the HCaBP is localized in the chorionic villi and is primarily associated with the trophoblastic cells of the placenta. In addition, an 'in vitro' cell-free assay system for Ca2+ uptake was constructed with microsomal membranes isolated from term placental tissues. Ca2+ uptake by the placental microsomal fraction exhibited characteristics indicative of active Ca2+ transport such as temperature-dependence, saturability and energetic requirement. In this system, preincubation of microsomal membranes with anti-HCaBP antibodies inhibited Ca2+ uptake, suggesting that the HCaBP is functionally involved in placental membrane Ca2+ uptake.  相似文献   

17.
The substitution of trivalent lanthanide ions for Ca(II) in the Ca(II)-DEPENDENT ACTIVATION OF BOVINE Factor X by the coagulant protein of Russell's viper venom was studied at pH 6.8. Factor X contains two high affinity metal binding sites which bind Gd(III), Sm(III), and Yb(III) with a Kd of about 4 X 10-7 M and four to six lower affinity metal binding sites which bind Gd(III), Sm(III) with a Kd of about 1.5 X 10-5M. In comparison, 1 mol of Factor X binds 2 mol of Ca(II) with a Kd of 3 X 10-4M and weakly binds many additional Ca(II) ions. No binding of Gd(III) to the venom protein was observed. Dy(III), Yb(III), Tb(III), Gd(III), Eu(III), La(III), AND Nd(III) cannot substitute for Ca(II) in the Ca(II)-dependent activation of Factor X by the venom protein at pH 6.8. Kinetic data consistent with the models of competitive inhibition of Ca(II) by Nd(III) yielded a Ki of 1 to 4 X 10-6M. The substitution of lanthanide ions for Ca(II) to promote protein complex formation of Factor X-metal-venom protein without the activation of Factor X facilitated the purification of the coagulant protein from crude venom by affinity chromatography. Using a column containing Factor X covalently bound to agarose which was equilibrated in 10 mM Nd(III), Tb(III), Gd(III), or La(III), the coagulant protein was purified 10-fold in 40% yield from crude venom and migrated as a single band on gel electrophoresis in sodium dodecyl sulfate. These data suggest that lanthanide ions complete with Ca(II) for the metal binding sites of Factor X and facilitate the formation of a nonproductive ternary complex of venom protein-Factor X-metal. Tb(III) fluorescence, with emission maxima at 490 and 545 nm, is enhanced 10,000-fold in the presence of Factor X. The study of the participation of an energy donor intrinsic to Factor X in energy transfer to Tb(III) may be useful in the characterization of the metal binding sites of Factor X.  相似文献   

18.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

19.
Studies with sarcolemma from cattle myometrium containing inside-out cytoplasmic vesicles, using Ca2+-EGTA buffer, showed that the affinity of ionized Ca2+ for the Mg2+- or ATP-dependent transport is higher than that for the Na+-Ca2+ exchange system (Kd = 3,2 X 10(-6) and (4.3-5.3) X 10(-5) M), respectively. The Km values for MgATP are 2.15 mM. Oxytocin added to the homogenization medium containing rabbit and cattle myometrium cells, i.e. during the formation of closed sarcolemmal fragments, resulted in inhibition of Mg2+, ATP-dependent accumulation of 45Ca2+ by plasma membranes. However, an addition of oxytocin to the incubation medium did not affect the kinetics of active accumulation of Ca2+. It was assumed that the system of non-electrogenic Na+-Ca2+ exchange in the myometrium possessing a low affinity for Ca2+ provides for the maintenance of ionized Ca2+ concentration in the myocytes at 10(-5) M. Therefore, this system cannot induce relaxation of mechanical tension of the uterus. Further decrease of Ca2+ in the myoplasm from 10(-5) to 10(-7) M and, correspondingly, the relaxation of myometrium is provided for by the Mg2+, ATP-dependent efflux of Ca2+ from the myocytes having a high affinity for this cation. The decrease of the activity of ATP-dependent Ca2+-pump by oxytocin is the cause of Ca2+ elevation in the myoplasm and, consequently, of myometrium contraction.  相似文献   

20.
Vitamin K-dependent protein S is shown to contain four very high affinity Ca2(+)-binding sites. The number of sites and their affinities were determined from Ca2+ titration in the presence of the chromophoric chelator Quin 2. In 0.15 M NaCl, pH 7.5, the four macroscopic binding constants are K1 greater than or equal to 1 x 10(8) M-1, K2 = 3 +/- 2 x 10(7) M-1, K3 = 4 +/- 2 x 10(6) M-1, and K4 = 9 +/- 4 x 10(5) M-1. At low ionic strength, the corresponding values are K1 greater than or equal to 2 x 10(9) M-1, K2 = 9 +/- 4 x 10(8) M-1, K3 = 2 +/- 1 x 10(8) M-1, and K4 = 9 +/- 4 x 10(7) M-1. To localize the Ca2(+)-binding sites, protein S was subjected to proteolysis using lysyl endopeptidase. This yielded a 20-21-kDa fragment which comprised the third and fourth epidermal growth factor (EGF)-like domains and remained high affinity Ca2(+)-binding site(s). The susceptibility of the EGF-like domains to proteolysis increased when Ca2+ was removed from protein S indicating that the Ca2+ binding is important for the stability and/or conformation of the EGF domains. Three of the four EGF-like domains in protein S contain beta-hydroxyasparagine. In each of these domains there is a cluster of three or four negatively charged amino acid residues which are likely to contribute to the extraordinary high Ca2+ affinity. From sequence homology it is suggested that this novel type of high affinity Ca2(+)-binding site is present in several other proteins, e.g. in the EGF-like domains in the low sensity lipoproteins receptor, thrombomodulin, the Notch protein of Drosophila melanogaster, and transforming growth factor beta 1-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号