首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Type glycans containing phosphorylcholine (PC-glycans), unusual structures found in the important human pathogens filarial nematodes, represent a novel target for chemotherapy. Previous work in our laboratories produced compositional information on the PC-glycan of ES-62, a secreted protein of the rodent parasite Acanthocheilonema viteae. In particular, we established using fast atom bombardment mass spectrometry (MS) analysis that PC was attached to a glycan with a trimannosyl core, with and without core fucosylation, carrying between one and four additional N-acetylglucosamine residues. In the present study, we demonstrate that this structure is conserved among filarial nematodes, including the parasite of humans, Onchocerca volvulus, for which new drugs are most urgently sought. Furthermore, by employing a variety of procedures, including collision-activated dissociation MS-MS analysis and matrix-assisted laser desorption MS analysis, we reveal that surprisingly, filarial nematodes also contain N-linked glycans, the antennae of which are composed of chito-oligomers. To our knowledge, this is the first report of such structures in a eukaryotic glycoprotein.  相似文献   

2.
ES-62 is an immunomodulatory phosphorylcholine (PC)-containing glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae. Previously, the use of knockout mice has revealed the effects of ES-62 on macrophages and dendritic cells to be dependent on TLR4. However, it is possible that ES-62 may interact with additional proteins on the surfaces of target cells and hence that cells may vary with respect to receptor usage. In this study, we identified by molecular weight, proteins that interact with ES-62 and found differences amongst the immune system cells studied. Thus, whereas lymphocytes appear to have two major interacting proteins of ~135 and ~82 kDa, U937 monocytes only contain an ES-62-binding protein of the latter molecular weight. Binding to the proteins on B cells and U937 cells was blocked by PC, suggesting a critical role for this ES-62 moiety in facilitating interaction. Finally, ES-62 binding is followed by internalization in both macrophages and B cells but only in the former was absence of TLR4 found to block internalization. These findings are consistent with differences in receptor usage by ES-62 amongst different cell-types.  相似文献   

3.
Phosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses.  相似文献   

4.
Understanding modulation of the host immune system by pathogens offers rich therapeutic potential. Parasitic filarial nematodes are often tolerated in human hosts for decades with little evidence of pathology and this appears to reflect parasite-induced suppression of host proinflammatory immune responses. Consistent with this, we have previously described a filarial nematode-derived, secreted phosphorylcholine-containing glycoprotein, ES-62, with immunomodulatory activities that are broadly anti-inflammatory in nature. We sought to evaluate the therapeutic potential of ES-62 in vitro and in vivo in an autoimmune disease model, namely, collagen-induced arthritis in DBA/1 mice. ES-62 given during collagen priming significantly reduced initiation of inflammatory arthritis. Crucially, ES-62 was also found to suppress collagen-induced arthritis severity and progression when administration was delayed until after clinically evident disease onset. Ex vivo analyses revealed that in both cases, the effects were associated with inhibition of collagen-specific pro-inflammatory/Th1 cytokine (TNF-alpha, IL-6, and IFN-gamma) release. In parallel in vitro human tissue studies, ES-62 was found to significantly suppress macrophage activation via cognate interaction with activated T cells. Finally, ES-62 suppressed LPS-induced rheumatoid arthritis synovial TNF-alpha and IL-6 production. Evolutionary pressure has promoted the generation by pathogens of diverse mechanisms enabling host immune system evasion and induction of "tolerance." ES-62 represents one such mechanism. We now provide proof of concept that parasite-derived immunomodulatory strategies offer a novel therapeutic opportunity in inflammatory arthritis.  相似文献   

5.
ES-62, a protein secreted by filarial nematodes, parasites of vertebrates including humans, has an unusual posttranslational covalent addition of phosphorylcholine to an N-type glycan. Studies on ES-62 from the rodent parasite Acanthocheilonema viteae ascribe it a dominant role in ensuring parasite survival by modulating the host immune system. Understanding this immunomodulation at the molecular level awaits full elucidation but distinct components of ES-62 may participate: the protein contributes aminopeptidase-like activity whereas the phosphorylcholine is thought to act as a signal transducer. We have used biophysical and bioinformatics-based structure prediction methods to define a low-resolution model of ES-62. Sedimentation equilibrium showed that ES-62 is a tightly bound tetramer. The sedimentation coefficient is consistent with this oligomer and the overall molecular shape revealed by small angle x-ray scattering. A 19 A model for ES-62 was restored from the small-angle x-ray scattering data using the program DAMMIN which uses simulated annealing to find a configuration of densely packed scattering elements consistent with the experimental scattering curve. Analysis of the primary sequence with the position-specific iterated basic local alignment search tool, PSI-BLAST, identified six closely homologous proteins, five of which are peptidases, consistent with observed aminopeptidase activity in ES-62. Differences between the secondary structure content of ES-62 predicted using the consensus output from the secondary structure prediction server JPRED and measured using circular dichroism are discussed in relation to multimeric glycosylated proteins. This study represents the first attempt to understand the multifunctional properties of this important parasite-derived molecule by studying its structure.  相似文献   

6.
Unraveling the molecular mechanisms by which filarial nematodes, major human pathogens in the tropics, evade the host immune system remains an elusive goal. We have previously shown that excretory-secretory product-62 (ES-62), a homologue of phosphorylcholine-containing molecules that are secreted by human parasites and which is active in rodent models of filarial infection, is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal transduction elements in B lymphocytes. Such activation mediates desensitization of subsequent B cell Ag receptor (BCR) ligation-induced activation of extracellular signal-regulated kinase-mitogen-activated protein (ErkMAP) kinase and ultimately B cell proliferation. We now show that the desensitization is due to ES-62 targeting two major regulatory sites of B cell activation. Firstly, pre-exposure to ES-62 primes subsequent BCR-mediated recruitment of SHP-1 tyrosine phosphatase to abolish recruitment of the RasErkMAP kinase cascade via the Igalphabeta-ShcGrb2Sos adaptor complex interactions. Secondly, any ongoing ErkMAP kinase signaling in ES-62-primed B cells is terminated by the MAP kinase phosphatase, Pac-1 that is activated consequently to challenge via the BCR.  相似文献   

7.
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, exhibits anti-inflammatory properties by virtue of covalently attached phosphorylcholine moieties. Screening of a library of ES-62 phosphorylcholine-based small molecule analogues (SMAs) revealed that two compounds, termed 11a and 12b, mirrored the helminth product both in inhibiting mast cell degranulation and cytokine responses in vitro and in preventing ovalbumin-induced Th2-associated airway inflammation and eosinophil infiltration of the lungs in mice. Furthermore, the two SMAs inhibited neutrophil infiltration of the lungs when administered therapeutically. ES-62-SMAs 11a and 12b thus represent starting points for novel drug development for allergies such as asthma.  相似文献   

8.
Parasite survival and host health may depend on the ability of the parasite to modulate the host immune response by the release of immunomodulatory molecules. Excretory-secretory (ES)-62, one such well-defined molecule, is a major secreted protein of the rodent filarial nematode Acanthocheilonema viteae, and has homologues in human filarial nematodes. Previously we have shown that ES-62 is exclusively associated with a Th2 Ab response in mice. Here we provide a rationale for this polarized immune response by showing that the parasite molecule suppresses the IFN-gamma/LPS-induced production, by macrophages, of bioactive IL-12 (p70), a key cytokine in the development of Th1 responses. This suppression of the induction of a component of the host immune response extends to the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not NO. The molecular mechanism underlying these findings awaits elucidation but, intriguingly, the initial response of macrophages to ES-62 is to demonstrate a low and transient release of these cytokines before becoming refractory to further release induced by IFN-gamma/LPS. The relevance of our observations is underscored by the finding that macrophages recovered from mice exposed to "physiological" levels of ES-62 by the novel approach of continuous release from implanted osmotic pumps in vivo were similarly refractory to release of IL-12, TNF-alpha, IL-6, but not NO, ex vivo. Therefore, our results suggest that exposure to ES-62 renders macrophages subsequently unable to produce Th1/proinflammatory cytokines. This likely contributes to the generation of immune responses with an anti-inflammatory Th2 phenotype, a well-documented feature of filarial nematode infection.  相似文献   

9.
Atopic allergy is characterized by an increase in IgE antibodies that signal through the high-affinity Fcepsilon receptor (FcepsilonRI) to induce the release of inflammatory mediators from mast cells. For unknown reasons, the prevalence of allergic diseases has recently increased steeply in the developed world. However, this increase has not been mirrored in developing countries, even though IgE concentrations are often greatly elevated in individuals from these countries, owing to nonspecific IgE induction by universally present parasitic worms. Here we offer one explanation for this paradox based on the properties of ES-62, a molecule secreted by filarial nematodes. We found that highly purified, endotoxin-free ES-62 directly inhibits the FcepsilonRI-induced release of allergy mediators from human mast cells by selectively blocking key signal transduction events, including phospholipase D-coupled, sphingosine kinase-mediated calcium mobilization and nuclear factor-kappaB activation. ES-62 mediates these effects by forming a complex with Toll-like receptor 4, which results in the sequestration of protein kinase C-alpha (PKC-alpha). This causes caveolae/lipid raft-mediated, proteasome-independent degradation of PKC-alpha, a molecule important for the coupling of FcepsilonRI to phospholipase D and mast cell activation. We also show that ES-62 is able to protect mice from mast cell-dependent hypersensitivity in the skin and lungs, indicating that it has potential as a novel therapeutic for allergy.  相似文献   

10.
ES-62 is the major secreted protein of the parasitic filarial nematode, Acanthocheilonema viteae. The molecule exists as a large tetramer (MW, ~240kD), which possesses immunomodulatory properties by virtue of multiple phosphorylcholine (PC) moieties attached to N-type glycans. By suppressing inflammatory immune responses, ES-62 can prevent disease development in certain mouse models of allergic and autoimmune conditions, including joint pathology in collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Such protection is associated with functional suppression of “pathogenic” hyper-responsive synovial fibroblasts (SFs), which exhibit an aggressive inflammatory and bone-damaging phenotype induced by their epigenetic rewiring in response to the inflammatory microenvironment of the arthritic joint. Critically, exposure to ES-62 in vivo induces a stably-imprinted CIA-SF phenotype that exhibits functional responses more typical of healthy, Naïve-SFs. Consistent with this, ES-62 “rewiring” of SFs away from the hyper-responsive phenotype is associated with suppression of ERK activation, STAT3 activation and miR-155 upregulation, signals widely associated with SF pathogenesis. Surprisingly however, DNA methylome analysis of Naïve-, CIA- and ES-62-CIA-SF cohorts reveals that rather than simply preventing pathogenic rewiring of SFs, ES-62 induces further changes in DNA methylation under the inflammatory conditions pertaining in the inflamed joint, including targeting genes associated with ciliogenesis, to programme a novel “resolving” CIA-SF phenotype. In addition to introducing a previously unsuspected aspect of ES-62’s mechanism of action, such unique behaviour signposts the potential for developing DNA methylation signatures predictive of pathogenesis and its resolution and hence, candidate mechanisms by which novel therapeutic interventions could prevent SFs from perpetuating joint inflammation and destruction in RA. Pertinent to these translational aspects of ES-62-behavior, small molecule analogues (SMAs) based on ES-62’s active PC-moieties mimic the rewiring of SFs as well as the protection against joint disease in CIA afforded by the parasitic worm product.  相似文献   

11.
ES-62 is a phosphorylcholine-containing glycoprotein secreted by filarial nematodes, which has previously been shown to possess a range of immunomodulatory capabilities. We now show, using a CD4+ transgenic TCR T cell adoptive transfer system, that ES-62 can modulate heterologous Ag (OVA)-specific responses in vivo. Thus, in contrast to the mixed IgG1-IgG2a response observed in control animals, ES-62-treated mice exhibited a Th2-biased IgG Ab response as evidenced by stable enhancement of anti-OVA IgG1 production and a profound inhibition of anti-OVA IgG2a. Consistent with this, Ag-specific IFN-gamma produced was suppressed by pre-exposure to ES-62 when T cells were rechallenged ex vivo. However, the response observed was not classical Th2, because although Ag-specific IL-5 production was enhanced by pre-exposure to ES-62, IL-13, and IL-4 were inhibited when T cells were rechallenged ex vivo. Moreover, such T cells produced lower levels of IL-2 and proliferated less upon Ag rechallenge ex vivo. Finally, pre-exposure to ES-62 inhibited the clonal expansion of the transferred Ag-specific CD4+ T cells and altered the functional response of such T cells in vivo, by modulating the kinetics and reducing the extent of their migration into B cell follicles.  相似文献   

12.
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.  相似文献   

13.
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.  相似文献   

14.
Modulation of immune responses is an important strategy employed by pathogens to enable their survival in host organisms. Secreted immunomodulatory molecules are key weapons in the pathogen's battle with the host immune system. In this review, we will discuss the immunomodulatory effects of the phosphorylcholine-containing filarial nematode glycoprotein, ES-62, on the host immune system and summarise the results of our studies to identify the intracellular signalling pathways targeted by ES-62 to achieve these effects.  相似文献   

15.
Theileria parva-infected B cells express Jagged-1 and activate Notch signalling in a parasite-dependent manner. ES-62, a filarial nematode-secreted phosphorylcholine-containing glycoprotein, is able to further stimulate Notch-mediated signalling in parasitized cells. Notch is also activated to a similar extent by addition of exogenous IL-10, and this occurs prior to any increase in proliferation in T. parva-infected B cells.  相似文献   

16.
Although exogeneous "danger" signals such as LPS can activate APC to produce a Th1 response, the nature of events initiating a Th2 response is controversial. We now show that pathogen-derived products have the capacity to induce bone marrow-derived dendritic cell cultures to acquire a phenotype that promotes the differentiation of naive CD4+ T cells toward either a Th1 or Th2 phenotype. Thus, LPS-matured dendritic cells (DC1) promote a Th1 response (increased generation of IFN-gamma and reduced production of IL-4) by Ag-stimulated CD4+ T cells from the DO.11.10 transgenic mouse expressing a TCR specific for an OVA peptide (OVA323-339). In contrast, a phosphorylcholine-containing glycoprotein, ES-62, secreted by the filarial nematode, Acanthocheilonema viteae, which generates a Th2 Ab response in vivo, is found to induce the maturation of dendritic cells (DC2) with the capacity to induce Th2 responses (increased IL-4 and decreased IFN-gamma). In addition, we show that the switch to either Th1 or Th2 responses is not effected by differential regulation through CD80 or CD86 and that a Th2 response is achieved in the presence of IL-12.  相似文献   

17.
Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications.  相似文献   

18.
Filarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-alpha, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-gamma. We have investigated the possibility that a TLR is involved in the recognition of ES-62 by target cells, because phosphorylcholine, a common pathogen-associated molecular pattern, appears to be responsible for many of the immunomodulatory properties of ES-62. We now demonstrate that ES-62-mediated, low level IL-12 and TNF-alpha production by macrophages and dendritic cells is abrogated in MyD88 and TLR4, but not TLR2, knockout, mice implicating TLR4 in the recognition of ES-62 by these cells and MyD88 in the transduction of the resulting intracellular signals. We also show that ES-62 inhibits IL-12 induction by TLR ligands other than LPS, bacterial lipopeptide (TLR2) and CpG (TLR9), via this TLR4-dependent pathway. Surprisingly, macrophages and dendritic cells from LPS-unresponsive, TLR4-mutant C3H/HeJ mice respond normally to ES-62. This is the first report to demonstrate that modulation of cytokine responses by a pathogen product can be abrogated in cells derived from TLR4 knockout, but not C3H/HeJ mice, suggesting the existence of a novel mechanism of TLR4-mediated immunomodulation.  相似文献   

19.
20.
ES-1 cells, which showed a higher sensitivity to the cytocidal action of estradiol were isolated from a human breast cancer MCF-7 cell line. Growth of ES-1 cells was inhibited by a dose of 17-beta estradiol that stimulated the growth of the parental MCF-7 cells. Proteins secreted from MCF-7 and ES-1 cells when cultured with 17-beta estradiol were compared by sodium dodecyl sulfate-containing polyacrylamide gel electrophoresis (SDS-PAGE). Addition of estradiol to culture medium enhanced secretion of a protein of molecular mass of 52 kDa in media for both MCF-7 and ES-1 cell lines, but the secretion of a second 67 kDa protein was enhanced about 10-fold only in ES-1 cells. The analysis by SDS-PAGE of culture medium immunoprecipitated with anti-tissue-type plasminogen activator (t-PA) antibody demonstrated that the band of 67 kDa protein specifically secreted from estradiol-treated ES-1 cells contained t-PA. Zymography assays, quantitative immunoreactive assays, and Northern analysis showed about 5-fold specific increase by estradiol of t-PA with molecular mass of 65-70 kDa in ES-1 but not in its parental MCF-7 cells. Cellular level of the plasminogen activity was also specifically enhanced in ES-1 cells by estradiol, but only a slightly in MCF-7 cells. By contrast, another urokinase-type PA (u-PA) with molecular weight of 55 kDa showed very low level activity in both MCF-7 and ES-1 cell lines in the presence of estradiol. Formation of t-PA mRNA was specifically enhanced in ES-1 cells when ES-1 cells were treated for more than 12 h with 10(-8) M 17-beta estradiol. Estradiol did not elongate the lifetime of t-PA mRNA in ES-1 cells. A unique phenotype of ES-1 cells in response to estradiol is discussed in relation to activating expression of the t-PA gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号