首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphometric analytical procedures were employed to study the pineal gland of the Mongolian gerbil following superior cervical ganglionectomy (SCGX). The purpose of this study was to define the effects of sympathetic denervation on the morphology of the gland at two time periods, 0500 and 1900 h (one hour before lights-on and lights-off, respectively). Fluorescence histochemistry was employed to determine catecholamine and indoleamine content in intact and denervated pineal glands. After SCGX, the pinealocytes decrease in size, concretions are prevented from forming, and the yellow fluorescence in the gland is lost. Following denervation a depression in the volume of most of the pinealocyte organelles, i.e., SER, RER/ribosomes, free cytoplasm, mitochondria and presumptive secretory vesicles, was also observed. However, synaptic ribbons increased in volume in the gerbils that had been killed at 1900 h. It appears that the sympathetic innervation to the pineal gland is a requirement for the presumptive secretory activity of the pinealocytes.  相似文献   

2.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

3.
The ultrastructure of the pinealocyte in the woodchuck, Marmota monax, was studied during the four seasons of the year. Fall cells have a fairly uniform cytoplasmic density, organelles consistent with synthetic and/or secretory activity and rather extensive pericapillary and intercellular spaces. Many winter pinealocytes are nearly devoid of ribosomes and granular endoplasmic reticulum but contain lipid droplets associated with mitochondria. Pericapillary and intercellular spaces are minimal. Spring glands have the greatest variation in cytoplasmic density with intercellular and pericapillary spaces similar to that seen in fall glands. Cells containing electron dense cytoplasm have Golgi zone associated, secretory granules, free ribosomes, short sections of granular endoplasmic reticulum and dense bodies. Cells with a more electron lucent cytoplasm are similar to the most frequently observed summer pinealocytes which have numerous Golgi zones but few associated secretory granules. Microtubules are prominent in the cytoplasm of these cells, the plasma membranes are smooth and intercellular and pericapillary spaces are minimal. A yearly rhythm or cyclic activity of the pinealocyte is suggested.  相似文献   

4.
Summary In baboons kept under controlled lighting conditions, microtubules (MT) are readily seen in the perikaryal cytoplasm and in the perivascular processes of pinealocytes. A significant increase in the number of MT, single synaptic ribbons (SR) and the formation of synaptic ribbon fields (RF, i.e. organelles which consist of multiple dense rodlets or plates, and vesicles), occur during the dark phase of a circadian light-dark cycle. MT may act as tracks for the oriented flow of vesicles derived from the smooth endoplasmic reticulum, to cytoplasmic sites where RF are being formed. The origin of the dense rodlets of RF remains unknown. Structural differences between SR and RF indicate that the latter organelles are not directly involved in impulse propagation between adjacent baboon pinealocytes. RF may function as storage organelles for some of the pineal secretory products which are formed in large amounts during the dark phase.  相似文献   

5.
Development,structure, and occurrence of secretory trichomes ofPharbitis   总被引:1,自引:1,他引:0  
Summary Secretory trichomes develop from epidermal cells on the leaf primordia and stem ofPharbitis nil. Following an initial growth phase, trichomes begin active secretion of a protein-carbohydrate mucilage. This mucilage covers the shoot apex and developing leaves ofPharbitis.The secretory cells possess cellular organelles in forms usually associated with actively secreting cells: many mitochondria, an elaborate network of rough endoplasmic reticulum (RER), many free ribosomes, and numerous dictyosomes. The role of the dictyosomes is twofold: 1. dictyosome vesicles bud coated vesicles which transport materials from the cell and, 2. dictyosome vesicles coalesce, forming large storage vesicles. The storage vesicles are surrounded by, and often in contact with, poculiform RER. The RER forms an interconnected network throughout the cytoplasm, extending from the nuclear envelope to the plasmalemma. Distended profiles of RER are frequently in direct contact with the plasmalemma. Thus, inPharbitis secretory trichomes, it is the coated vesicles and RER which are active in secretion export. These findings imply a secretory pathway which deviates from the usual pattern in glandular cells.Predoctoral fellow of National Science Foundation during part of the investigation.  相似文献   

6.
An electron microscopic study of satellite cells in the sensory lumbar ganglia from 12 pre- and post-hatching stages of Gallus gallus domesticus L., between the 5th and 120th d, was undertaken. A combined light and electron microscopic morphometric analysis was made in 10 and 18 d embryos and in 8, 35, 61, and 120 d post-hatching specimens. RER, SER, Golgi complex, mitochondria, free ribosomes, cell expansions, pinocytotic vesicles, subsurface cisternae and adhering, gap, and tight junctions are described from the different stages considered. Although a continuous increase in nuclear and cytoplasmic volumes is observed, there is a tendency towards a decrease in the cytoplasm/nucleus and nerve cell/satellite cell volume ratios.  相似文献   

7.
Two morphologically distinct blood cell-types, the granulocyte and hyalinocyte, are found in the hemolymph circulation of the marine prosobranch Cerithidea californica. Granulocytes, measuring 12.7 µ (9.0–15.0 µ) in diameter, possess well-defined ectoplasmic and endoplasmic regions of the cytoplasm, granules of moderate to heavy electron density, tubular rough endoplasmic reticulum (RER), short vesicles of smooth endoplasmic reticulum (SER), and a large cytoplasm to nucleus ratio. Two morphological variants of this cell-type are distinguished depending upon the presence or absence of dense granules or RER. Hyalinocytes, measuring 5.3 µ (4.0–8.0 µ) in diameter, are distinguished from gran ulocytes by possessing a smaller cytoplasm to nucleus ratio and a general lack of dense cytoplasmic granules and SER.  相似文献   

8.
Summary The ultrastructural study of free circulating hemocytes in the adult cochineal scale,Dactylopius confusus (Cockerell), demonstrated five cell types: prohemocytes, typical granulocytes (T-granulocytes), oenocytoids, plasmatocytes, and granulocytes with modified sub-cellular structure to perform a special synthetic and secretory function, which we refer to as modified granulocytes (M-granulocytes). Prohemocytes showed undifferentiated sub-cellular structure of the basic stem cell type (i.e., high cytoplasmic density with numerous ribosomes, centrally located large nucleus with a distinct nucleolus, and poorly developed endoplasmic reticulum). The commonly observed typical granulocytes (T-granulocytes) had several smooth endoplasmic reticulum (SER) with dilated cisternae and many SER-derived membrane bounded granules of different sizes and electron density. Oenocytoids were identified by the presence of many crystals, RER-originated fine secretory granules, and an eccentric nucleus. Plasmatocytes were easily characterized by their variable shapes and irregular outline with pseudopodia-like cytoplasmic extensions, possession of an elongated lobed nucleus, multivesicular bodies, RER-derived membrane bounded, electron-dense, lysosomelike vacuoles, well-developed SER cisternae, and numerous pinocytic and SER-originated vesicles of different sizes along the peripheral region. M-granulocytes comprised the largest proportion of hemocytes in all samples observed. M-granulocytes were distinguished not only by the presence of membrane bounded granules of different sizes and electron density, but by the possession of large nuclei with distinct nucleoli, many mitochondria, and a highly developed network of rough endoplasmic reticulum (RER). M-granulocytes had abundant, rosette-shaped, RER-derived chains of fine secretory granules, which accumulated in the cytoplasm and vacuoles, and were ultimately deposited into the hemolymph by exocytosis. These fine granules gave a positive result with periodic acid-Schiff (PAS) test. Based on RER-synthesized fine secretory granules (M-granulocytes), their ultimate deposition into hemolymph, the red pigmentation of hemolymph, positive PAS histochemical test of these granules, and the high population of these hemocytes, no such cell type has been described in previous studies in insects. The sub-cellular structure of the granulocyte in this insect has been modified to perform a special synthetic and secretory function (i.e., possibly the synthesis of the red pigment found in hemolymph, which has been the source of commercially important cochineal dye).Abbreviations EM electron microscope - ER endoplasmic reticulum - LM light microscopy - MVB multivesicular body - PAS periodic acid-Schiff - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum - SG secretory granules - TEM transmission electron microscopy - UA uranyl acetate  相似文献   

9.
On the basis of structural observations bovine oocytes were grouped into four successive classed: 0, those before the luteinizing hormone (LH) surge; 1, those up to 8 h following the LH peak level; 2, those between 8 and 19 h after the LH peak level; and 3, those between 19 h after the LH peak level and ovulation. Oocytes in class 0 had mitochondria located in a generally peripheral position. Interior to the mitochondria were elements of rough endoplasmic reticulum (RER) and numerous membrane-bound vesicles which bore ribosome-like particles on their outer surface. The first visible changesater the LH peak level as seen in class 1 were the formation of the periviteline space with loss of contact between the cumulus cells and the oocyte, and ruffing of the nuclear envelope. These changes were followed b the resumption of meiosis as defined by germinal-vesicle breakdown (GVBD), the disappearance of RER, and the formation fo clusters of mitochondria in association with lipid droplets and elementrs of smooth endolasmic reticulum (SER). The period between 8 and 19 h following LH peak level (class 2) was characterized by intensive clustering of mitochoncria in association with lipid droplets and elements of SER, conversion of lipid, fusion of vesicles, and the appearance of ribosomes in the cytoplasm. During the final stage (class 3), the polar body was extruded, the mitochondria dispersed, and the majority of the organelles became located toward the center of the cell. The relatively organelle-free cortical region contained cortical granules immediately adjacent to the plasma membrane together with aggregates of tubular SER. The structural changes are discussed in the context of follicular steroidogenesis and oocyte developmental competence.  相似文献   

10.
Mouse mammary epithelial cells cultivated on collagen gels synthesize and secrete casein in a hormone-dependent manner. Fine-structure electron microscopy of secretory cultures revealed numerous cytoplasmic structures surrounded by membrane that is studded with ribosomes. The structures appear to be distended rough endoplasmic reticulum (RER). Electron microscope protein A-colloidal gold immunolocalization showed casein antiserum-specific deposition of gold particles over the RER cytoplasmic vesicles in cells provided insulin, prolactin, and hydrocortisone (IPF). Nonimmune antiserum showed no gold particle deposition over these cytoplasmic structures. Epithelia provided only insulin showed no such cytoplasmic vesicles nor any specific deposition of gold particles. Immunoblot analysis of cell lysate and culture medium showed casein only in IPF-treated cultures. It appears that the casein secretory pathway in collagen gel cultured mammary epithelia is blocked at the step that fuses RER vesicles to Golgi membrane. The data raise questions regarding the processing and maturation of casein and the mechanism of casein secretion in these cultures.  相似文献   

11.
Both qualitative and quantitative comparative studies of "dark" and "light" pinealocytes of the porcine pineal gland have been carried out. These cells differ from each other in their electronic density of cytoplasm, shape of nucleus, the structure of membrane bound dense bodies and the number of microtubules and smooth endoplasmic reticulum. The membrane bound dense bodies--characteristic structures of pig pinealocytes as well dense core vesicles occur in both types of cells. The relative volume of the majority of the cells' organellae apart from the Golgi apparatus, also do not show any significant difference. The results obtained support a functional basis for pinealocyte differentiation in the porcine pineal gland.  相似文献   

12.
Summary We have studied the sites of synthesis, assembly, and secretion of apoVLDL-II, a major apoprotein in very low density lipoproteins (VLDL), in the cockerel liver by immunoelectron microscopy. In the liver of the estrogen-treated cockerel, apoVLDL-II reaction products were localized in the cisternae of the nuclear envelope and the rough endoplasmic reticulum (RER). Such products were not observed in the smooth endoplasmic reticulum (SER). ApoVLDL-II reaction products were also located on the surface of lipid particles in the Golgi apparatus and secretory vesicles. Such lipid particles were not detected in the RER or SER. Some secretory vesicles containing the reaction products were seen during the process of fusion with the plasma membrane. Such fusion took place against the plasma membrane lining the space of Disse as well as the intercellular spaces. Reaction products also occurred in the sinusoids. These observations are compatible with the following sequence of events in the synthesis, assembly and secretion of apoproteins in VLDL in the cockerel liver: ApoVLDL-II is synthesized on bound ribosomes attached to the nuclear envelope and RER, and is discharged into their cisternae. The protein is probably transported to the Golgi apparatus where the assembly of this protein and its lipid components probably takes place. Secretory vesicles derived from the Golgi apparatus carry the VLDL particles to the plasma membrane where secretion of these particles takes place by exocytosis, and the VLDL are discharged into the sinusoid via both the space of Disse and intercellular spaces.This work was supported by Grants 78-1102 from the American Heart Association, and HL-16512 from the NIH  相似文献   

13.
The ecdysial glands of mature male Libinia emarginata are pale, yellowish organs composed of lobes of epithelial cells having oval nuclei which are often eccentric and which have one or two nucleoli containing amorphous granular material and coarse strands. The plasma membrane bordering the basal lamina consists of invaginations containing microtubules which may serve to increase the surface area for metabolic exchange. Masses of smooth endoplasmic reticulum and associated vesicles are scattered throughout the cytoplasm. Two or more vacuoles may coalesce. Larger vesicles lie close to the cell surface. Numerous mitochondria with tubular cristae surround the nucleus and frequently are associated with SER. A few Golgi complexes consisting of flattened sacs, cisternae or vesicles, lipid droplets and free ribosomes were seen. Adjacent plasma membranes may be in close apposition or separated by a space filled with vesicles, granules, or blood or supporting cells. This type of ultrastructure is associated with steroid-secreting cells.  相似文献   

14.
The changes occurring in rat hepatocytes during a 5 day period of treatment with phenobarbital were determined by morphometric and biochemical methods, particular attention being paid to the endoplasmic reticulum. The hepatocytic cytoplasm played an overwhelming part in the liver hypertrophy, while the hepatocytic nuclei contributed to only a moderate extent. The endoplasmic reticulum accounted for more than half of the increase in cytoplasmic volume. The increase in the volume and number of hepatocytic nuclei in the course of phenobarbital treatment was associated with changes in the ploidy pattern. Until the 2nd day of treatment both the rough-surfaced endoplasmic reticulum (RER) and the smooth-surfaced endoplasmic reticulum (SER) participated in the increase in volume and surface of the whole endoplasmic reticulum (ER). Subsequently, the values for RER fell again to control levels, whereas those for SER continued to increase, with the result that by the 5th day of treatment the SER constituted the dominant cytoplasmic element. The specific volume of mitochondria and microbodies (peroxisomes) remained constant throughout the duration of the experiment, while that of the dense bodies increased. The specific number of mitochondria and microbodies displayed a significant increase, associated with a decrease in their mean volume. The phenobarbital-induced increase in the phospholipid and cytochrome P-450 content of the microsomes, as well as in the activities of microsomal reduced nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase and N-demethylase, was correlated with the morphometric data on the endoplasmic reticulum.  相似文献   

15.
Calf lungs were fixed with glutaraldehyde and examined by scanning (SEM) and transmission (TEM) electron microscopy to compare the ultrastructure of Clara cells in terminal bronchioles of neonatal calves and older cattle. In the neonatal calf, SEM revealed numerous smooth-surfaced Clara cells protruding above a similar number of ciliated cells, whereas in older animals the surface of Clara cells was lobulated. Thin sections examined by TEM revealed numerous cuboidal to columnar Clara cells with indented nuclei and a pale cytoplasm filled with faintly granular glycogen in the neonatal calf. Some cells were characterized by apical dense and/or pale membrane-bound granules or secretory droplets. Many cells had an apical tubular network of cisternae that were partly smooth and partly decorated with ribosomes. Ultrastructural comparison of Clara cells in a 2-day-old calf with those of 14- and 19-day-old, 4- and 5. 5-month-old, and 3.5-year-old cattle revealed a striking reduction in the amount of glycogen per cell after 14 days. The number of cells with apical granules was small at all ages, and the density of the secretory granules varied greatly in different cells. A variable amount of smooth endoplasmic reticulum (SER) was present but was less prominent than cisternae of ribosomal endoplasmic reticulum (RER). In older cattle, the limited amount of SER compared to the RER and secretory granules suggests that bovine Clara cells are more likely to be secretory than detoxifying.  相似文献   

16.
Krylova MI 《Tsitologiia》2010,52(9):749-759
Electron microscopic observations of the lymph hearts of tadpoles and yearling frogs of Rana temporaria showed that mast cells (MCs) were present not only between muscle fibers (population of resident MCs), but in the cavities of lymph heart (population of circulating MCs), too. There were some differences in the ultrastructure of the resident MCs at each studied stage of larval development. The first recognizable MCs were revealed in the lymph hearts at premetamorphosis (stages 39-41). MCs presented as mononuclear relatively small and slightly elongated cells with a few immature secretory granules and numerous free ribosomes, polysomes and short cisternae of rough endoplasmic reticulum (RER) in the cytoplasm. Chromatin of their nuclei was poorly condensed; the Golgi apparatus was moderately developed. At pro-metamorphosis (stages 44-45), we revealed MCs at different levels of their differentiation. Some MCs demonstrated an active process of granulogenesis in their cytoplasm. Among densely packed cytoplasmic organelles, immature secretory granules were closely associated with cisternae of RER and free ribosomes. Other MCs appeared as more differentiated cells. They were characterized by a predominantly heterochromatic nuclei and cytoplasm filled with polymorphic and heterogeneous granules. MCs also showed a reduction in the number of free ribosomes and cisternae of RER in the cytoplasm. On the contrary, the Golgi apparatus was well developed. Stacks of Golgi cisternae, detaching vacuoles, and progranules occupied the perinuclear region. The majority of the outlines above ultrastructural features of differentiated MCs were typical for MCs of yearling frogs. At metamorphic climax (stages 52-53), MCs often tightly contacted with macrophages. We did not reveal apoptotic MCs. However, some MCs exhibited morphological features typical for programmed necrosis-like death, which was characterized by mitochondria swelling, dilatation of cisternae of RER and nuclear envelope, plasma membrane rupture and subsequent loss of intracellular contents. Electron microscopical immunocytochemistry revealed the localization of atrial natriuretic peptide (ANP), substance S (SP) and heat shock protein (Hsp70) in the secretory granules of the resident and circulating MCs at different stages of tadpole development and in yearling frogs.  相似文献   

17.
Summary The ultrastructure of the pars intermedia of Rana catesbeiana tadpoles was studied following isolation from the hypothalamus, in vivo after sectioning of the pituitary stalk, and in vitro after implantation of the pituitary into a piece of tail fin. Both experimental procedures were followed by rapid and sustained skin darkening. Pituitaries from normal light and dark adapted tadpoles served as controls.In 4-hour disinhibited glands, melanotrophs revealed hyperactive Golgi bodies, colloid vesicles (1–2 microns) in close proximity to axon terminals, and no apparent loss of secretory granules. At 24 hours extracellular colloid adjacent to axon terminals was found, and extensive arrays of RER appeared in the melanotrophs. Obvious granule loss from secretory cells occurred within a week, by which time the cytoplasm was occupied by large cisterns of SER and RER and abundant free ribosomes. Dense core vesicles (600–900 Å) in aminergic nerve terminals disappeared shortly after isolation of the pituitary from the hypothalamus, and only decreasing numbers of translucent vesicles (200–300 Å) were found.The functional significance of these changes is discussed, with particular emphasis on the mode of acute hormone release.This study was carried out in the Department of Anatomy, Albert Einstein College of Medicine, New York. I am greatly indebted to Professor Berta Scharrer and Professor William Etkin for their sponsorship, guidance and encouragement. Warm thanks are due to Mrs. Sarah Wurzelmann and Mr. Stanley Brown for their technical assistance. Support from U.S.P.H.S. grants NIH-NB 00840, NIH R01 Am 3984 and NSF Grant 12353 is gratefully acknowledged.  相似文献   

18.
Abstract. Taxol induces a vast increase in the number of microtubules (MTs) in functional chondroblasts. The drug also induces a marked change in MT distribution. In control cultures, anti-tubulin stains long, fine, sinuous filaments radiating from a perinuclear center. In taxol-treated cells, anti-tubulin stains stubby, straight, chevron-like structures that assume a striking antipodal distribution. Such MT-bundles are relatively stable: they persist for over 48 h after removal of taxol, and even for 16–24 h in Colcemid. Many of these supernumerary MTs bind to, and align on, the cytoplasmic face of the rough endoplasmic reticulum (RER). In binding, the MTs displace the numerous ribosomes that normally stud the surface of the cisternae of the RER. The bound MTs form a remarkably uniform layer with center-to-center spacings of 40 nm. The attached parallel arrays of MTs achieve lengths of over 10 μm. These bound MTs not only dislodge ribosomes from the RER surface, but they also zip together adjacent ER complexes, forming tiers of two to eight cisternae. Numerous cytoplasmic bundles of hexagonally-ordered MTs are also induced. When closely aligned, the MTs assume a crystalline configuration with a six-fold symmetry, a central MT being surrounded by six equidistant MTs. A single cell can have over 100 MT-bundles and the number of MTs per bundles varies from 2–30. The forces aggregating cytoplasmic MT-bundles probably differ from those that bind MTs to the RER. Taxol also fragments the prominent Golgi complex that characterizes actively secreting chondroblasts. No obvious morphologic relationship has yet been detected between these induced MTs and other organelles such as intermediate-sized filaments, microfilaments, mitochondria, Golgi cisternae, or secretory vesicles.  相似文献   

19.
Taxol induces a vast increase in the number of microtubules (MTs) in functional chondroblasts. The drug also induces a marked change in MT distribution. In control cultures, anti-tubulin stains long, fine, sinuous filaments radiating from a perinuclear center. In taxol-treated cells, anti-tubulin stains stubby, straight, chevron-like structures that assume a striking antipodal distribution. Such MT-bundles are relatively stable: they persist for over 48 h after removal of taxol, and even for 16-24 h in Colcemid. Many of these supernumerary MTs bind to, and align on, the cytoplasmic face of the rough endoplasmic reticulum (RER). In binding, the MTs displace the numerous ribosomes that normally stud the surface of the cisternae of the RER. The bound MTs form a remarkably uniform layer with center-to-center spacings of 40 nm. The attached parallel arrays of MTs achieve lengths of over 10 microns. These bound MTs not only dislodge ribosomes from the RER surface, but they also zip together adjacent ER complexes, forming tiers of two to eight cisternae. Numerous cytoplasmic bundles of hexagonally-ordered MTs are also induced. When closely aligned, the MTs assume a crystalline configuration with a six-fold symmetry, a central MT being surrounded by six equidistant MTs. A single cell can have over 100 MT-bundles and the number of MTs per bundles varies from 2-30. The forces aggregating cytoplasmic MT-bundles probably differ from those that bind MTs to the RER. Taxol also fragments the prominent Golgi complex that characterizes actively secreting chondroblasts. No obvious morphologic relationship has yet been detected between these induced MTs and other organelles such as intermediate-sized filaments, microfilaments, mitochondria, Golgi cisternae, or secretory vesicles.  相似文献   

20.
Calmodulin, a multifunctional Ca(++)-binding protein, is present in all eucaryotic cells. We have investigated the distribution of this protein in the rat cerebellum by immunoelectron microscopy using a Fab-peroxidase conjugate technique. In Purkinje and granular cell bodies, calmodulin reaction product was found localized both on free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No calmoduline was observed in the cisternae of RER or the Golgi apparactus. Calmodulin did not appear to be concentrated in the soluble fraction of the cell under the conditions used. Rather, peroxidase reaction product could be seen associated with membranes of the Golgi apparatus the smooth endoplasmic reticulum (SER), and the plasma membrane of both cell bodies and neuronal processes. In the neuronal dendrites, calmodulin appeared to be concentrated on membranes of the SER, small vesicles, and mitochondria. Also, granular calmodulin was observed in the amorphous material. In the synaptic junction, a large amount of calmodulin was seen attached to the inner surface of the postsynaptic membrane, whereas very little was observed in the presynaptic membrane or vesicles. These observations suggest that calmodulin is synthesized on ribosomes and discharged into the cytosol, and that it then becomes associated with a variety of intracellular membranes. Calmodulin also seems to be transported via neuronal processes to the postsynaptic membrane. Calmodulin localization at the postsynaptic membrane suggests that this protein may mediate calcium effects at the synaptic junction and, thus, may play a role in the regulation of neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号