共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of guanine nucleotides on polyphosphoinositide synthesis in rat liver plasma membranes. 总被引:1,自引:0,他引:1 下载免费PDF全文
The subcellular distributions of endogenous ADP-ribosylation products in hearts from 1-day-old neonatal and adult rats were investigated. In adult rat heart a 52 kDa mono-ADP-ribosylation product was identified in the plasma membrane fraction. In contrast, in neonatal rat heart a 130 kDa poly-ADP-ribosylation product was present in the nuclear fraction. The monomeric and polymeric nature of the two ADP-ribosylation products was determined by their sensitivity to thymidine and by analysis of their snake venom phosphodiesterase products. NADP+ enhanced both the mono- and polymeric reactions. The ADP-ribose-protein linkage of the adult 52 kDa product was stable to 1 h of treatment with hydroxylamine (0.5 M) and mercury ions, but was sensitive to alkali and a 12 h treatment with hydroxylamine (1 M). This is suggestive of an arginine linkage. The 130 kDa poly-ADP-ribosylation product from the neonatal rat heart was alkalilabile but stable to both hydroxylamine and HgCl2. This implies the presence of an unusual linkage in the 130 kDa product. The presence of these different ADP-ribosylation products in adult and neonatal rat hearts suggests the possible importance of these proteins and their ADP-ribosylation during cardiac development. 相似文献
2.
The effects of adenine nucleotides and guanine nucleotides on urate synthesis de novo by isolated chick liver and kidney cells. 下载免费PDF全文
Isolated chick liver and kidney cells produce urate de novo from glycine, and this is partially inhibited by 1 mm-AMP and by 1 mm-GMP in liver cells but not in kidney cells. Azaserine fully inhibits this synthesis de novo, but attempts to isolate formylglycine amide ribonucleotide from azaserine-blocked cells were unsuccessful. 相似文献
3.
Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. Roles of guanine nucleotides and calcium 总被引:45,自引:0,他引:45
Calcium-sensitive inositide release in a purified rat liver plasma membrane preparation is increased by calcium-mobilizing hormones in the presence of guanine nucleotides. Vasopressin-stimulated inositide release is evident in the presence of GTP or its nonhydrolyzable analogs guanyl-5'-yl imidodiphosphate and guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The stimulation of inositide release by (-)-epinephrine (alpha 1), angiotensin II, or vasopressin in the presence of either 1 microM or 10 microM GTP gamma S correlates with the number of receptors present for each hormone. The guanine nucleotide and hormonal stimulation is evident on both inositol trisphosphate production and phosphatidylinositol bisphosphate degradation. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (1 mM) completely abolishes stimulation by guanine nucleotides and hormone. Prior treatment of plasma membranes with cholera toxin or islet activating protein or prior injection of animals with islet activating protein does not affect stimulation of inositide release by GTP gamma S or GTP gamma S plus vasopressin. Stimulation by GTP gamma S is dependent upon magnesium and is inhibitable by guanosine 5'-(2-O-thio) diphosphate. Inositide release from the plasma membrane exhibits half-maximal stimulation by calcium at approximately 100 nM free calcium in the presence of 1.5 mM MgCl2 and at approximately 10 microM free calcium in the presence of 10 mM MgCl2. Addition of guanine nucleotides decreases the requirement for calcium and also increases the activity at saturating calcium. The results presented suggest that calcium-mobilizing hormones stimulate polyphosphoinositide breakdown in rat liver plasma membranes through a novel guanine nucleotide binding protein. 相似文献
4.
A Cauvin L Buscail P Gourlet P De Neef P Robberecht N Yanaihara J Christophe 《Peptides》1991,12(1):139-143
Guinea pig VIP differs from VIP of several mammals by its amino acids in positions 5, 9, 19 and 26. We tested a) its ability to occupy VIP receptors in liver and lung membranes of rat and guinea pig and in the human lymphoblastic SUP-T1 cell line and b) the ensuing adenylate cyclase stimulation. In liver and lung membranes from rat, guinea pig VIP was less potent than common VIP to occupy high and low affinity VIP receptors. In rat liver both VIP activated adenylate cyclase mostly through high affinity receptors. In rat lung, guinea pig VIP activated the enzyme mostly through high affinity receptors and was less efficient than common VIP acting through both classes of receptors. In guinea pig liver and lung membranes, binding inhibition curves were steeper than with rat preparations and adenylate cyclase appeared to be mostly activated through high affinity VIP receptors in liver and through both classes of receptors in lung. On human lymphoblastic SUP-T1 membranes both VIP were equally potent and efficient to inhibit tracer binding and activate adenylate cyclase. 相似文献
5.
Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists 总被引:20,自引:0,他引:20
Release of P-choline and choline from purified rat plasma membrane preparations was increased by GTP and its less hydrolyzable analogues, whereas other nucleotide triphosphates had little or no effect. Stimulation by guanosine 5'-(3-O-thiol)triphosphate (GTP gamma S) was dependent upon magnesium, inhibited by guanosine 5'-(2-O-thiol)diphosphate, and independent of calcium. ATP and ADP (1-100 microM) markedly enhanced the GTP gamma S stimulation of P-choline plus choline release but had no effect alone. ADP was as effective as ATP and nonhydrolyzable ATP analogues produced a similar or greater stimulation, whereas AMP and adenosine were much less effective. Vasopressin (0.1 microM) also produced a small stimulation. Under conditions in which protein kinase C was activated, PMA also stimulated the response to GTP gamma S but was ineffective in its absence. P-choline was the initial product which was hydrolyzed to choline. Guanine nucleotide and purinergic effects were also apparent on phosphatidylcholine degradation. EGTA, at 0.5 mM, completely removed purinergic stimulation but did not affect P-choline plus choline released in response to GTP gamma S alone. Prior treatment of plasma membranes with cholera toxin or prior injection of animals with islet-activating protein did not affect the stimulation of P-choline plus choline release either by GTP gamma S alone or by GTP gamma S plus ATP. These results indicate that a phosphatidylcholine phospholipase C is coupled to purinergic receptors in rat liver plasma membranes by a GTP-binding protein. Hydrolysis of phosphatidylcholine could contribute to hepatic diacylglycerol levels and thus influence protein kinase C activity. 相似文献
6.
GTP and GDP concentrations can be determined by a simple and specific spectrophotometric assay that uses commercially available enzymes. The conversion of GTP to GDP catalyzed by nucleosidediphosphate kinase in the presence of ADP enables the subsequent use of guanylate kinase which is coupled with hexokinase and glucose-6-phosphate dehydrogenase as indicator enzymes. Guanylate kinase which is highly specific for GDP and 5′-GMP (Miech, R. P., and Parks, R. E., Jr. (1965) J. Biol. Chem.240, 351–357) is also used for the determination of 5′-GMP and of the sum of all acid-soluble guanine 5′-nucleotides. The latter are hydrolyzed by snake venom phosphodiesterase and assayed as 5′-GMP. The assays are highly reproducible with standard deviations of less than 2% when performed in the optimal range between 2 and 100 nmol of guanine nucleotide per cuvette. The sensitivity can be increased by use of dual wavelength measurements of fluorimetry or by following the generation of ATP with the luciferase-catalyzed luminescence. Contents of guanine nucleotides and of total nucleoside 5′-triphosphates were measured in liver, kidney, brain, and skeletal muscle of the rat. The effect of guanosine and of inhibitors of inosinate dehydrogenase (virazole and mycophenolate) on the level of GTP and GDP was examined in ascites hepatoma cells in suspension. 相似文献
7.
P2-purinoceptor agonists stimulated the DNA synthesis of Jurkat cells via a pathway independent of cAMP and intracellular free calcium. The response was greatly enhanced by the synergistic action between adenine and guanine nucleotides, suggesting that binding sites of these nucleotides are different from each other, and the proliferation is stimulated by a novel interaction between adenine and guanine nucleotide receptors. The stimulatory effects of P2-agonists on proliferation was completely abolished by cholera toxin and attenuated by pertussis toxin, which suggests that substrates for cholera toxin and pertussis toxin are involved in the proliferative pathways associated with P2-purinoceptors. 相似文献
8.
9.
Bie Shung Tsai Robert J. Lefkowitz 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,587(1):28-41
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase. 相似文献
10.
The regulation of adenylate cyclase by guanine nucleotides in Dictyostelium discoideum membranes 总被引:11,自引:0,他引:11
P J Van Haastert B E Snaar-Jagalska P M Janssens 《European journal of biochemistry》1987,162(2):251-258
Extracellular cAMP induces the activation of adenylate cyclase in Dictyostelium discoideum cells. Conditions for both stimulation and inhibition of adenylate cyclase by guanine nucleotides in membranes are reported. Stimulation and inhibition were induced by GTP and non-hydrolysable guanosine triphosphates. GDP and non-hydrolysable guanosine diphosphates were antagonists. Stimulation was maximally twofold, required a cytosolic factor and was observed only at temperatures below 10 degrees C. An agonist of the cAMP-receptor-activated basal and GTP-stimulated adenylate cyclase 1.3-fold. Adenylate cyclase in mutant N7 could not be activated by cAMP in vivo; in vitro adenylate cyclase was activated by guanine nucleotides in the presence of the cytosolic factor of wild-type but of not mutant cells. Preincubation of membranes under phosphorylation conditions has been shown to alter the interaction between cAMP receptor and G protein [Van Haastert (1986) J. Biol. Chem. in the press]. These phosphorylation conditions converted stimulation to inhibition of adenylate cyclase by guanine nucleotides. Inhibition was maximally 30% and was not affected by the cytosolic factor involved in stimulation. In membranes obtained from cells that were treated with pertussis toxin, adenylate cyclase stimulation by guanine nucleotides was as in control cells, whereas inhibition by guanine nucleotides was lost. When cells were desensitized by exposure to cAMP agonists for 15 min, and adenylate cyclase was measured in isolated membranes, stimulation by guanine nucleotides was lost while inhibition was retained. These results suggest that Dictyostelium discoideum adenylate cyclase may be regulated by Gs-like and Gi-like activities, and that the action of Gs but not Gi is lost during desensitization in vivo and by phosphorylation conditions in vitro. 相似文献
11.
Effects of guanine nucleotides on cholera toxin catalyzed ADP-ribosylation in rat adipocyte plasma membranes 总被引:4,自引:0,他引:4
ADP-ribosylation of rat adipocyte plasma membrane proteins was investigated following incubation of membranes with [alpha-32P]NAD and cholera toxin in the presence and absence of various guanine nucleotides. In membranes incubated without guanine nucleotides, cholera toxin induced incorporation of 32P into three discrete proteins of 48, 45, and 41 kDa. In membranes containing 100 microM GTP or GDP, toxin-catalyzed incorporation of 32P into the 41-kDa protein was inhibited. GMP and Gpp(NH)p (100 microM) allowed moderate incorporation of 32P into the 41-kDa protein. Toxin-catalyzed labeling of all proteins was rapid, reaching maximal levels between 5 and 10 min. Toxin-catalyzed ADP-ribosylation of the 48- and 45-kDa proteins was stimulated by GTP, reaching maximal levels at 10(-5) M GTP. Inhibition of toxin-dependent labeling of the 41-kDa protein required GTP concentrations above 10(-7) M with complete inhibition occurring between 10(-5) and 10(-4) M GTP. Cholera toxin catalyzed ADP-ribosylation was increased up to 2-fold in membranes supplemented with adipocyte cytosol. These results indicate that cholera toxin catalyzes ADP-ribosylation of three distinct adipocyte plasma membrane proteins, each of which is regulated by the amount and type of added guanine nucleotides. 相似文献
12.
Bombesin receptor in membranes from Swiss 3T3 cells. Binding characteristics, affinity labelling and modulation by guanine nucleotides. 总被引:2,自引:0,他引:2 下载免费PDF全文
Bombesin-like neuropeptides, including mammalian gastrin-releasing peptide (GRP), are potent mitogens for Swiss 3T3 cells. In this study, we have characterized the bombesin receptor in membrane preparations from these cells. Addition of Mg2+ during cell homogenization was essential to preserve 125I-GRP binding activity in the resulting membrane preparation. The effect of Mg2+ was concentration dependent, with a maximum at 5 mM. Specific binding of 125I-GRP was saturable; Scatchard analysis indicated a single class of high-affinity sites of Kd = (2.1 +/- 0.3) x 10(-10) M at 15 degrees C and Kd = (1.9 +/- 0.4) x 10(-10) M at 37 degrees C, and a maximum binding capacity of 580 +/- 50 fmol/mg of protein (15 degrees C) or 604 +/- 40 fmol/mg of protein (37 degrees C). The kinetically derived dissociation constant was 1.5 x 10(-10) M. 125I-GRP binding was inhibited in a concentration-dependent manner by various peptides containing the highly conserved C-terminal heptapeptide of the bombesin family, including bombesin, GRP, neuromedin B and the 8-14 fragment of bombesin. In contrast, a variety of structurally unrelated mitogens and neuropeptides had no effect. The cross-linking agent ethyleneglycolbis(succinimidylsuccinate) covalently linked 125I-GRP to a single Mr 75 000-85 000 protein in membrane preparations of 3T3 cells. Affinity labelling of this molecule was specific and dependent on the presence of Mg2+ during membrane preparation. Finally, the non-hydrolysable GTP analogue guanosine-5'-[gamma-thio]triphosphate (GTP[S]) caused a concentration-dependent inhibition of 125I-GRP binding and cross-linking to 3T3 cell membranes [concentration giving half-maximal inhibition (IC50) approximately 0.2 microM]. The inhibitory effect was specific (GMP, ATP or ATP[S] had no effect at 10 microM) and was due to an increase in Kd from (1.7 +/- 0.2) x 10(-10) M to (4.3 +/- 0.6) x 10(-10) M in the presence of 10 microM-GTP[S]. This modulation of ligand affinity and cross-linking implies that the bombesin receptors that mediate mitogenesis in Swiss 3T3 cells are coupled to a guanine-nucleotide-binding-protein signal-transduction pathway. 相似文献
13.
14.
Hormonal activation of adenylate cyclase in macrophage membranes is regulated by guanine nucleotides 总被引:7,自引:0,他引:7
Many macrophage functions such as chemotaxis, phagocytosis, enzyme secretion, and cytotoxicity are influenced by intracellular cyclic nucleotide levels, but the regulatory mechanisms involved are poorly defined. We have developed methods that allowed us to study the activation of AC in isolated guinea pig (g.p.) macrophage membranes. AC in these membrane preparations could be stimulated approximately twofold by guanine nucleotides. We could not obtain any hormonal activation of membrane-bound AC in the absence of guanine nucleotides. In the presence of GTP, however, the hormones isoproterenol and PGE1 elicited an additional threefold rise in AC activity, which subsided after approximately 15 min. As little as 10(-8) M concentrations of these two hormones induced significant elevations of AC activity. Replacement of GTP by its nonhydrolyzable analogue Gpp(NH)p resulted in a persistent hormone-independent activation of AC, and addition of hormones enhanced this level of activation. Thus, GTP-ase activity is present in macrophage membrane preparations and serves to regulate AC activation. Hormonal stimulation of AC was receptor mediated, because the effect of the beta-adrenergic agonist isoproterenol, but not PGE1, was inhibited by the beta-adrenergic blocker propranolol. In addition, the potency series of PG corresponded to that observed for stimulation of cAMP production in intact g.p. macrophages, i.e., PGE1 = PGE2 greater than PGA1 greater than PGF2 alpha. AC activation by PG in the membrane preparation was inhibited by an alpha-adrenergic agonist, thus demonstrating one means for down regulating cAMP production in g.p. macrophages. Our studies also showed that certain hormones (e.g., beta-adrenergic agonists, PG) can exert their effect on cAMP production by stimulation of membrane-bound AC, whereas other agents such as lectins or arachidonic acid require additional intracellular components to elevate cAMP levels in macrophages. The mechanism of activation of AC by hormones in g.p. macrophage membranes appears to fit the model of a ternary complex, the components of which include the hormone receptor, AC, and guanine nucleotide regulatory protein, which transmits the signal from the receptor to AC. 相似文献
15.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occurring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase. 相似文献
16.
The GTP analog 5′-quanylyl-imidodiphosphate Gpp(NH) p potentiated the action of VIP on adenylate cyclase from intestinal epithelial cell membranes. The other nucleotides tested were also active on adenylate cyclase with the following order of potency GTP>GDP>GMP>ITP>UTP=CTP. Guanine nucleotides act by increasing the Vmax of the enzyme activity and by decreasing the Km of enzyme activation by VIP. Activation of the peptide-induced adenylate cyclase activity by Gpp (NH) p was inhibited by GTP and the other nucleotides with the same order and range of potency than those observed for their intrinsic stimulatory effect on adenylate cyclase. These data demonstrate the potent and specific action of quanine nucleotides on the VIP-sensitive adenylate cyclase. 相似文献
17.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms. 相似文献
18.
Solubilization of glucagon and epinephrine sensitive adenylate cyclase from rat liver plasma membranes 总被引:5,自引:0,他引:5
Hormonally sensitive adenylate cyclase has been solubilized from rat liver plasma membranes using Triton X-305 in Tris buffers containing mercaptoethanol and MgCl2. The solubilized enzyme was stimulated 5 fold by NaF, 7 fold by glucagon and 20 fold by epinephrine. Criteria for solubilization included lack of sedimentation at 100,000 × g for one hour, the absence of particulate material in the 100,000 × g supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cyclase activity in Sephadex G 200 gels. The molecular weight of the solubilized, hormonally sensitive enzyme was approximately 200,000 in the presence of Triton X-305. 相似文献
19.
The effects of GTP gamma S on glucose transport activity reconstituted from adipocyte membrane fractions were studied in order to test the hypothesis that intrinsic activity changes of the insulin-sensitive glucose transporter may be mediated by guanine nucleotide-dependent mechanisms. GTP gamma S and GTP inhibited reconstituted glucose transport activity by 50% in membrane fractions from insulin-treated cells in a concentration-dependent manner; no inhibitory effect was observed in membrane fractions obtained from basal cells. GDP, GMP and guanosine were less effective than GTP, whereas the adenine nucleotides ATP gamma S and AMP failed to reduce the reconstituted transport activity. The data indicate that guanine nucleotides may modulate the activity of the adipocyte glucose transporter. Since the effect is dependent on treatment of cells with insulin, the hormone appears to induce a specific functional alteration of the glucose transporter. 相似文献