首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we compare the physiological state of Escherichia coli exposed to tellurite or selenite by using the noninvasive technique of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. We studied glucose-fed Escherichia coli HB101 cells containing either a normal pUC8 plasmid with no tellurite resistance determinants present or the pTWT100 plasmid which contains the resistance determinants tehAB. No differences could be observed in intracellular ATP levels, the presence or absence of a transmembrane pH gradient, or the levels of phosphorylated glycolytic intermediates when resistant cells were studied by 31P NMR in the presence or absence of tellurite. In the sensitive strain, we observed that the transmembrane pH gradient was dissipated and intracellular ATP levels were rapidly depleted upon exposure to tellurite. Only the level of phosphorylated glycolytic intermediates remained the same as observed with resistant cells. Upon exposure to selenite, no differences could be observed by 31P NMR between resistant and sensitive strains, suggesting that the routes for selenite and tellurite reduction within the cells differ significantly, since only tellurite is able to collapse the transmembrane pH gradient and lower ATP levels in sensitive cells. The presence of the resistance determinant tehAB, by an as yet unidentified detoxification event, protects the cells from uncoupling by tellurite.  相似文献   

2.
Tellurite (TeO3(2-)) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we observe that the tellurite-dependent depletion of cellular thiols in mutants of the glutathione and thioredoxin thiol:redox system was less than in wild-type cells. To identify the type of low-molecular-weight thiol compounds affected by tellurite exposure, the thiol-containing molecules were analyzed by reverse phase HPLC as their monobromobimane derivatives. Results indicated that reduced glutathione is a major initial target of tellurite reactivity within the cell. Other thiol species are also targeted by tellurite, including reduced coenzyme A. The presence of the tellurite resistance determinants kilA and ter protect against the loss of reduced glutathione by as much as 60% over a 2 h exposure. This protection of glutathione oxidation is likely key to the resistance mechanism of these determinants. Additionally, the thiol oxidation response curves were compared between selenite and tellurite. The loss of thiol compounds within the cell recovered from selenite but not to tellurite.  相似文献   

3.
By use of 31P NMR, the transmembrane pH gradient (delta pH) and the intracellular levels of phosphorylated metabolites were measured in aerobic suspensions of wild-type Escherichia coli cells in the presence and absence of the adenosinetriphosphatase (ATPase) inhibitor dicyclohexylcarbodiimide (DCCD); the same parameters were also determined in E. coli mutants deficient in ATPase activity under both anaerobic and aerobic conditions. A method is described by which dense suspensions of E. coli cells (approximately 3 X 10(11) cells/mL) were oxygenated so that steady-state O2 levels in the suspensions were far greater than the Km for O2 consumption. Under these conditions, in wild-type MRE600 cells, the intracellular concentrations of PI, NTP, and NDP were measured to be 3.0 +/- 1.5, 8 +/- 1, and 1.2 +/- 1 mM, respectively, while the intracellular pH was approximately 7.5 over the external pH range studied (6 to approximately 7.0). Upon treatment with DCCD, the intracellular NTP level was drastically reduced and intracellular Pi concentration increased in respiring wild-type cells; in the same cells, however, DCCD did not affect the intracellular pH and the delta pH. During respiration in the presence of lactate, ATPase- cells established a delta pH but failed to synthesize any detectable levels of NTP. Conversely, ATPase- cells accumulated high levels of NTP but did not generate a delta pH during glycolysis under anaerobic conditions. These results are in complete agreement with the generally accepted chemiosmotic hypothesis. 31P NMR data on intact ATPase- NR70 cells were in agreement with the previously proposed [Rosen, B. P., Brey, R., & Hasan, S. (1978) J. Bacteriol. 134, 1030] existence of a proton leak in this strain which is sealed by DCCD or by spontaneous mutation into strain NR71. However, the NMR data also indicated that other major differences exist between NR71 and NR70 cells.  相似文献   

4.
Free and agarose-encapsulated pentachlorophenol (PCP)-degrading Sphingomonas sp. isolates UG25 and UG30 were compared to Sphingomonas chlorophenolica ATCC 39723 with respect to the ability to degrade PCP. Pretreatment of the UG25 and UG30 strains with 50 microg of PCP per ml enabled the cells to subsequently degrade higher levels of this environmental pollutant. Similar treatment of ATCC 39723 cells had no effect on the level of PCP degraded by this strain. Phosphorus-31 nuclear magnetic resonance spectra of agarose-immobilized strains UG25 and UG30 grown in the absence of PCP showed that there was marked deenergization of the cells upon exposure to a nonlethal concentration of PCP (120 microg/ml). For example, no transmembrane pH gradient was observed, and the ATP levels were lower than the levels obtained in the absence of PCP. The transmembrane pH gradient and ATP levels were restored once the immobilized cells had almost completely degraded the PCP in the perfusion medium. PCP-pretreated cells, on the other hand, maintained their transmembrane pH gradient and ATP levels even in the presence of high levels of PCP. The ability of PCP-pretreated strain UG25 and UG30 cells to remain energized in the presence of PCP was shown to correlate with an altered membrane phospholipid profile; these cells had a higher concentration of cardiolipin than cells cultured in the absence of PCP. Strain ATCC 39723, which did not degrade higher levels of PCP after PCP pretreatment, did not show this response.  相似文献   

5.
Free and agarose-encapsulated pentachlorophenol (PCP)-degrading Sphingomonas sp. isolates UG25 and UG30 were compared to Sphingomonas chlorophenolica ATCC 39723 with respect to the ability to degrade PCP. Pretreatment of the UG25 and UG30 strains with 50 μg of PCP per ml enabled the cells to subsequently degrade higher levels of this environmental pollutant. Similar treatment of ATCC 39723 cells had no effect on the level of PCP degraded by this strain. Phosphorus-31 nuclear magnetic resonance spectra of agarose-immobilized strains UG25 and UG30 grown in the absence of PCP showed that there was marked deenergization of the cells upon exposure to a nonlethal concentration of PCP (120 μg/ml). For example, no transmembrane pH gradient was observed, and the ATP levels were lower than the levels obtained in the absence of PCP. The transmembrane pH gradient and ATP levels were restored once the immobilized cells had almost completely degraded the PCP in the perfusion medium. PCP-pretreated cells, on the other hand, maintained their transmembrane pH gradient and ATP levels even in the presence of high levels of PCP. The ability of PCP-pretreated strain UG25 and UG30 cells to remain energized in the presence of PCP was shown to correlate with an altered membrane phospholipid profile; these cells had a higher concentration of cardiolipin than cells cultured in the absence of PCP. Strain ATCC 39723, which did not degrade higher levels of PCP after PCP pretreatment, did not show this response.  相似文献   

6.
Abstract The tellurite accumulation properties of three Escherichia coli strains containing different tellurium-resistance determinants of Gram-negative origin, from plasmids pMER610, pHH1508a and RK2, were compared. In all three cases membrane-associated tellurium crystallization was observed, and neither reduced uptake nor increased export contributed to the resistance. Specific membrane-proximal reduction is proposed as the mechanism of resistance to tellurite coded by all three determinants, despite their lack of sequence homology.  相似文献   

7.
31P-NMR has been applied to the study of the metabolisms of the intact parasitic helminths Ascaris suum (the intestinal roundworm) and Fasciola hepatica (the liver fluke). After calibration of the chemical shift of Pi in muscle extracts the internal pH of adult Ascaris worms and the effect of the pH of the external medium on the organism's internal pH were measured. Assignments of nearly all of the observable 31P resonances could be made. A large resonance from glycerophosphorylcholine whose function is unclear was observed but no signals from energy storage compounds such as creatine phosphate were detected. The profiles of the phosphorus-containing metabolites in both organisms were monitored as a function of time. Changes in sugar phosphate distributions but not ATP/ADP were observed. Studies of the drug closantel on Fasciola hepatica were performed. Initial effects of the drug were a decrease in glucose 6-phosphate and an increase in Pi with no substantial change in ATP levels as observed by 31P-NMR. Studies involving treatment with closantel followed by rapid freezing, extraction, and analytical determination of glycolytic intermediates confirmed NMR observations. This NMR method can serve as a simple noninvasive procedure to study parasite metabolism and drug effects on metabolism.  相似文献   

8.
31P-NMR saturation transfer studies of aerobic Escherichia coli cells   总被引:1,自引:0,他引:1  
31P-NMR measurements of saturation transfer have been used to measure the flux between Pi and ATP in Escherichia coli cells respiring on an endogenous carbon source. Measurements were made in the wild type and in cells genetically modified to give a 5-fold higher concentration of the F1F0-ATP synthase. The flux in the two cell types was not significantly different. This, together with studies using inhibitors specific for the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase and the ATP synthase, suggests that the observed flux arises predominantly from glycolytic rather than ATP synthase activity. Although this conclusion is in disagreement with previous experiments on E. coli, it is in agreement with recent experiments on yeast.  相似文献   

9.
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K(2)TeO(3) at 128 microg/ml, compared to the MIC of 2 microg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-L-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a approximately 20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.  相似文献   

10.
Aspergillus parasiticus var. globosus IMI 120920 was able to grow in presence of different concentrations tested (0.052–4.0%) of sodium selenite or concentrations up to 2.0% potassium tellurite. Growth of the fungus was decreased greatly by the increase of metals concentrations. Dark colour colony and black reverse were formed in presence of tellurite while reddish gray to grayish red colony colour and brownish red to orange red reverse were formed in presence of selenite. The fungal biomass was slightly decreased at lower concentrations and highly inhibited at higher concentrations of selenite or tellurite. Selenite slightly stimulated aflatoxin formation at lower concentrations and highly inhibited it at higher concentrations. Aflatoxin production was decreased greatly by increasing tellurite concentrations. Obvious malformations were observed in the morphological features of the fungus in presence of different levels of selenite or tellurite. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Phenylphosphonate was used as an internal reference for 31p NMR measurements of E. coli cytoplasmic pH. Phenylphosphonate diffused into the cells allowing determination of pH, independent of magnetic susceptibility differences between intercellular and extracellular pools. Phenylphosphonate was used to measure pH changes during succinate uptake and metabolism, as well as during uncoupling of the transmembrane pH gradient by pentachlorophenol.  相似文献   

12.
Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.  相似文献   

13.
A determinant encoding resistance against potassium tellurite (Te(r)) was discovered in a clinical isolate of Escherichia coli strain KL53. The strain formed typical black colonies on solid LB medium with tellurite. The determinant was located on a large conjugative plasmid designated pTE53. Electron-dense particles were observed in cells harboring pTE53 by electron microscopy. X-Ray identification analysis identified these deposits as elemental tellurium and X-ray diffraction analysis showed patterns typical of crystalline structures. Comparison with JCPDS 4-0554 (Joint Committee on Powder Diffraction Standards) reference data confirmed that these crystals were pure tellurium crystals. In common with other characterized Te(r) determinants, accumulation studies with radioactively labeled tellurite showed that reduced uptake of tellurite did not contribute to the resistance mechanism. Tellurite accumulation rates for E. coli strain AB1157 harboring pTE53 were twice higher than for the plasmid-free host strain. In addition, no efflux mechanism was detected. The potassium tellurite resistance determinant of plasmid pTE53 was cloned using both in vitro and in vivo techniques in low-copy-number vectors pACYC184 and mini-Mu derivative pPR46. Cloning of the functional Te(r) determinant into high-copy cloning vectors pTZ19R and mini-Mu derivatives pBEf and pJT2 was not successful. During in vivo cloning experiments, clones with unusual "white colony" phenotypes were found on solid LB with tellurite. All these clones were Mucts62 lysogens. Their tellurite resistance levels were in the same order as the wild type strains. Clones with the "white" phenotype had a 3.6 times lower content of tellurium than the tellurite-reducing strain. Transformation of a "white" mutant with a recombinant pACYC184 based Te(r) plasmid did not change the phenotype. However, when one clone was cured from Mucts62 the "white" phenotype reverted to the wild-type "black" phenotype. It was suggested that the "white" phenotype was the result of an insertional inactivation of an unknown chromosomal gene by Mucts62, which reduced the tellurite uptake.  相似文献   

14.
Low concentrations of benzoic acid stimulated fermentation rates in Saccharomyces cerevisiae. At concentrations near the maximum permitting growth, there was inhibition of fermentation, lowered ATP and intracellular pH, and relatively greater accumulation of benzoate. Changes in the levels of glycolytic intermediates suggested that fermentation was inhibited as a result of high ATP usage rather than of lowered intracellular pH. Specific inhibition of phosphofructokinase or of several other glycolytic enzymes was not observed.  相似文献   

15.
A D Warth 《Applied microbiology》1991,57(12):3415-3417
Low concentrations of benzoic acid stimulated fermentation rates in Saccharomyces cerevisiae. At concentrations near the maximum permitting growth, there was inhibition of fermentation, lowered ATP and intracellular pH, and relatively greater accumulation of benzoate. Changes in the levels of glycolytic intermediates suggested that fermentation was inhibited as a result of high ATP usage rather than of lowered intracellular pH. Specific inhibition of phosphofructokinase or of several other glycolytic enzymes was not observed.  相似文献   

16.
Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (ii) glucose alone, and (iii) sucrose alone, respectively. Analysis of the genome of L. reuteri ATCC 55730 confirmed the presence of the genes for both pathways. Further evidence for the simultaneous operation of two central carbon metabolic pathways was found through the detection of fructose-1,6-bisphosphate aldolase, phosphofructokinase, and phosphoglucoisomerase activities and the presence of phosphorylated EMP and PKP intermediates using in vitro 31P NMR. The maximum specific growth rate and biomass yield obtained on glucose were twice as low as on sucrose. This was the result of low ATP levels being present in glucose-metabolizing cells, although the ATP production flux was as high as in sucrose-metabolizing cells due to a twofold increase of enzyme activities in both glycolytic pathways. Growth performance on glucose could be improved by adding fructose as an external electron acceptor, suggesting that the observed behavior is due to a redox imbalance causing energy starvation.  相似文献   

17.
Many eubacteria are resistant to the toxic oxidizing agent potassium tellurite, and tellurite resistance involves diverse biochemical mechanisms. Expression of the iscS gene from Geobacillus stearothermophilus V, which is naturally resistant to tellurite, confers tellurite resistance in Escherichia coli K-12, which is naturally sensitive to tellurite. The G. stearothermophilus iscS gene encodes a cysteine desulfurase. A site-directed mutation in iscS that prevents binding of its pyridoxal phosphate cofactor abolishes both enzyme activity and its ability to confer tellurite resistance in E. coli. Expression of the G. stearothermophilus iscS gene confers tellurite resistance in tellurite-hypersensitive E. coli iscS and sodA sodB mutants (deficient in superoxide dismutase) and complements the auxotrophic requirement of an E. coli iscS mutant for thiamine but not for nicotinic acid. These and other results support the hypothesis that the reduction of tellurite generates superoxide anions and that the primary targets of superoxide damage in E. coli are enzymes with iron-sulfur clusters.  相似文献   

18.
The metabolism of glucose was studied in Lactococcus lactis subsp. lactis CNRZ 125 by 13C NMR. The initial rate of glucose utilization was higher for exponential phase cells than for stationary phase cells [150 vs 85 nmol g (dry wt)-1 s-1]. 31P NMR was used to determine changes in glycolytic phosphorylated intermediates (fructose-1,6-diphosphate, dihydroxyacetone phosphate and phosphoglycerate). The internal pHs of L. lactis subsp. lactis CNRZ 141 and CNRZ 125 were also measured by 31P NMR as a function of the external pH during growth. When the external pH was 6·8, the internal pHs of strain CNRZ 141 and CNRZ 125 were similar, 7·4. After the external pH had decreased to 5·5, the internal pH of strain CNRZ 141 had declined by 0·6 unit, whereas that of strain CNRZ 125 had decreased by only 0·2 unit of pH.  相似文献   

19.
Escherichia coli is known to actively extrude sodium ions, but little is known concerning the concentration gradient it can develop. We report here simultaneous measurements, by 23Na NMR, of intracellular and extracellular Na+ concentrations of E. coli cells before and after energization. 23Na spectra in the presence of a paramagnetic shift reagent (dysprosium tripolyphosphate) consisted of two resonances, an unshifted one corresponding to intracellular Na+ and a shifted one corresponding to Na+ in the extracellular medium, including the periplasm. Extracellular Na+ was found to be completely visible despite the presence of a broad component in its resonance; intracellular Na+ was only 45% visible. Measurements of Na+ were made under aerobic and glycolytic conditions. Na+ extrusion and maintenance of a stable low intracellular Na+ concentration were found to correlate with the development and maintenance of proton motive force, a result that is consistent with proton-driven Na+/H+ exchange as a means of Na+ transport. In both respiring and glycolyzing cells, at an extracellular Na+ concentration of 100 mM, the intracellular Na+ concentration observed (4 mM) corresponded to an inwardly directed Na+ gradient with a concentration ratio of about 25. The kinetics of Na+ transport suggest that rapid extrusion of Na+ against its electrochemical gradient may be regulated by proton motive force or intracellular pH.  相似文献   

20.
Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level.In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins.Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control.The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号