首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra of polycrystalline stearic acid-d0, stearic acid-d35, 16:16-d2-18:18:18-d3-stearic acid, 18:18:18-d3-stearic acid, 17:17-d2-stearic acid, 17-d1-stearic acid, 16:16-d2-stearic acid, 12:12-d2-stearic acid and 12-d1-stearic acid have been obtained for the region containing the C-D and C-H stretching vibrations. Assignments of the methyl, methyl-d3, methylene, methylene-d2 and methylene-d1 stretching vibrations are discussed.  相似文献   

2.
A new natural product, 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid (G3) has been isolated from seeds of Gleditsia caspica. The structure has been established by chemical and spectroscopic methods. Catalytic reduction of G3 yields 2(S),4(S)-4-methylglutamic acid and a new amino acid, 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid. Ozonolysis of G3 followed by oxidation gives 2(S),3(R)-3-hydroxyaspartic acid. The S- (or l-) configurations at C2 in G3 and in 2(S),3(S),4(S)-3-hydroxy-4-methyglutamic acid and the S-configurations at C3 for G3 and 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid and at C4 for 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid are inferred from the configurations at C2 in 2(S),4(S)-4-methylglutamic acid and at C2 and C3 in 2(S),3(R)-3-hydroxyaspartic acid. The seeds also contain appreciable quantities of 2(S),3(S),4(R)-3-hydroxy-4-methylglutami c acid (G1) and 2(S),4(R)-4-methylglutamic acid.  相似文献   

3.
Fatty acid delta 6-desaturase (D6DES) and elongases are key enzymes in the synthesis of polyunsaturated fatty acids (PUFAs) including arachidonic acid (ARA) and eicosapentaenoic acid (EPA) from microorganisms to higher animals. To identify the genes encoding D6DES and elongases for PUFAs, we isolated each cDNA with a high similarity to the D6DES and ELOVL5-like elongases of mammals and fishes via degenerate PCR and RACE-PCR from Acanthopagrus schlegelii. A recombinant vector expressing AsD6DES was subsequently constructed and transformed into Saccharomyces cerevisiae to test the enzymatic activity toward n-6 and n-3 fatty acids in the PUFA biosynthesis. The heterologously expressed AsD6DES produced γ-linolenic acid (GLA, C18:3 n-6) and stearidonic acid (STA, C18:4 n-3) at conversion rates of 26.3–35.6 % from exogenous linoleic acid (LA, C18:2 n-6) and α-linolenic acid (ALA, C18:3 n-3) substrates, respectively. When AsELOVL5 was expressed in yeast, it conferred an ability to elongate GLA to di-homo-γ-linolenic acid (DGLA, C20:3 n-6). In addition, AsELOVL5 showed an ability to convert ARA (C20:4 n-6) and EPA (C20:5 n-3) to dodecylthioacetic acid (DTA, C22:4 n-6) and docosapentaenoic acid (DPA, C22:5 n-3), respectively. In these results, the AsD6DES encodes a delta 6-fatty acid desaturase and the AsELOVL5 encoding a long-chain fatty acid elongase shows activity to enlongate C18Δ6/C20Δ5, but not C22.  相似文献   

4.
Quinolinic acid phosphoribosyltransferase (EC 2.4.2.19) was purified 3600-fold from rat liver and 280-fold from rat brain. Kinetic analyses (Km = 12 μM for the substrate quinolinic acid and Km 23 μM for the cosubstrate phosphoribosylpyrophosphate), physicochemical properties of the purified enzymes, inhibition by phthalic acid (Ki = 1.4 μM) and molecular weight determination (Mr 160 000 for the holoenzyme, consisting of five identical 32 kDa subunits) indicated the structural identity of quinolinic acid phosphoribosyltransferase from the two rat tissues. This was further confirmed immunologically, using antibodies raised against purified rat liver quinolinic acid phosphoribosyltransferase. Rat quinolinic acid phosphoribosyltransferase differs in several aspects from quinolinic acid phosphoribosyltransferase isolated from other organisms. The purified enzyme will prove a useful tool in the examination of a possible role of quinolinic acid in cellular function and/or dysfunction.  相似文献   

5.
Fatty Acids of Myxococcus xanthus   总被引:9,自引:4,他引:5       下载免费PDF全文
Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria.  相似文献   

6.
A GC–EIMS method to determine the structure of the fatty acid chains in cyclic lipopeptides is described. The structure of the fatty acid chains can be determined by the characteristic peaks of the MS spectrogram according to the fact that the alpha cleavage predominates the MS of a fatty acid with amino and hydroxy groups, while the McLafferty rearrangement predominates the MS of one without amino or hydroxy group. The characteristics of the strongest peaks of 103 and 102 in MS spectrograms due to alpha cleavage represent the β-hydroxy-fatty acid and the β-amino fatty acid, respectively; the strongest peak of 117 due to alpha cleavage and the relatively weak peak of 88 due to McLafferty rearrangement indicate the β-hydroxy-fatty acid with a branched methyl group at its alpha position. The strongest peak of 74 due to McLafferty suggests the fatty acid without hydroxy or amino group. The ratio of relative intensity (I43/I57) characterizes the branches of alkyl chains. The greater I43/I57 corresponds to an iso alkyl, and the smaller I43/I57 corresponds to an anteiso alkyl. This method can be used to determine the full structure of the fatty acid chains in lipopeptides.  相似文献   

7.
A 3-O-methyltransferase which catalyzes the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified about 60-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The enzyme utilized, in addition to caffeic acid (Km = 133 μM), 5-hydroxyferulic acid (Km = 55 μM), 3,4,5-trihydroxy-cinnamic acid (Km = 100 μM), and protocatechualdehyde (Km = 50 μM) as substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of ferulic acid, of ortho-, meta-, and para-coumaric acids, and of the flavonoid compounds quercetin and luteolin. The methylation of caffeic acid and 5-hydroxyferulic acid showed a pH optimum at 6.5–7.0. No stimulation of the reaction velocity was observed when Mg2+ ions were added. EDTA did not inhibit the reaction. The Km for S-adencsyl-l-methionine was 15 μm. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine (Ki = 6.9 μM).  相似文献   

8.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   

9.
Gibberellin A1 (GA1), 3-epi-GA1, GA4, GA9, 11α-hydroxyGA12, 12α-hydroxyGA12, GA15, GA17, GA19, GA20, GA25, GA37, GA40, GA58, GA69, GA70, and GA71 have been identified from Kovats retention indices and full scan mass spectra by capillary GC-MS analyses of purified extracts from sporophytes of the tree fern, Cibotium glaucum. Abscisic acid, dihydrophaseic acid, an epimer of 4′-dihydrophaseic acid, and the epimeric ent-6α, 7α, 16α, 17-(OH)4 and ent-6α, 7α, 16β, 17-(OH)4 derivatives of ent16, 17-dihydrokaurenoic acid, in addition to the epimeric 16α, 17- and 16β, 17-dihydroxy-16, 17-dihydro derivatives of GA12, were also identified in extracts of C. glaucum. An oxodihydrophaseic acid and a hydroxydihydrophaseic acid were also detected. In extracts of sporophytes of Dicksonia antarctica, GA4, GA9, 12α- and 12β-hydroxyGA12, GA15, GA25, and GA37 were identified by the same criteria, as well as abscisic acid, phaseic acid, 8′-hydroxymethylabscisic acid and dihydrophaseic acid. This is the first time that GA40 has been identified in a higher plant; it is also the first report of the natural occurrence of the two gibberellins, 11α- and 12β-hydroxyGA12. The total gibberellin (GA) content in C. glaucum (tall) was at least one order of magnitude greater than that of D. antarctica (dwarf) based on total ion current response in GC-MS and bioassay data. Abscisic acid was a major component of D. antarctica and the oxodihydrophaseic acid was a major component of C. glaucum.  相似文献   

10.
The effects of tetrahydroisoquinolinecarboxylic acids, derived from dopamine and various phenylpyruvates, on the enzyme tyrosine 3-monooxygenase have been investigated. Using a partially purified tyrosine 3-monooxygenase from bovine adrenal medulla, 3′,4′-deoxynorlaudanosolinecarboxylic acid was found to be a mixed inhibitor against the cofactor (Ki = 122 μM), equipotent with norepinephrine. Norlaudanosolinecarboxylic acid inhibited tyrosine 3-monooxygenase competitively with respect to the cofactor (Ki = 126 μM). When tyrosine 3-monooxygenase activity in catecholamine-free striatal homogenates was studied, again 3′,4′-deoxynorlaudanosolinecarboxylic acid (Ki = 40 μM) behaved as a mixed inhibitor whereas norlaudanosolinecarboxylic acid (Ki = 136 μM) was competitive. When the rat striatal tyrosine 3-monooxygenase was subjected to phosphorylating conditions in vitro, decreases in the Ki of norlaudanosolinecarboxylic acid and in that of 3′,4′-deoxynorlaudanosolinecarboxylic acid were observed, whereas the Ki of dopamine was increased. Tyrosine 3-monooxygenase activity in rat striatal synaptosomes was also inhibited by 3′,4′-deoxynorlaudanosolinecarboxylic acid (IC50 = 100 μm) and phosphorylating conditions affected only that inhibition produced by dopamine, but not that by the tetrahydroisoquinolinecarboxylic acids. The results are discussed in relation to the structure of the tetrahydroisoquinolinecarboxylic acids and their possible role in vivo.  相似文献   

11.
《Phytochemistry》1987,26(5):1441-1445
Seed, kernel or fruit oils of the Cornaceae (nine species). Hydrangea, Hamamelis, Ilex (Aquifoliaceae) and the Styracaceae (two species) were analysed for fatty acid composition. Special attention was paid to the occurrence of petroselinic acid (18: 1Δ6c). In the species investigated. C18 acids were always present in greater quantities than C16 fatty acids; C20 and C22 acids were only minor components. The Cornaceae show differing fatty acid patterns which correlate well with anatomical, morphological and other chemical data. In Cornus, Curtisia, Mastixia and Corokia linoleic acid predominates, whereas linoleic and linolenic acid form the major components in Davidia and Nyssa. 18 : 1Δ6c, an aralioid type, occurs in large amounts in Aucuba and Griselinia. Hamamelis, Hydrangea and Ilex show a common fatty acid pattern with linoleic acid as the dominant component in all cases. Classification currently based on morphological and anatomical differences between the two species of Styracaceae which were investigated here should include their different fatty acid compositions: in Halesia linoleic acid predominates over oleic acid, whereas in Styrax equal amounts of these two acids are found.  相似文献   

12.
A methyltransferase, which catalyzes the methylation of luteolin (Km, 16 μM) using S-adenosyl-l-methionine as the methyl donor, has been purified about 38-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The following 3,4-dihydroxy phenolic compounds were also methylated: luteolin 7-O-glucoside (Km, 28 μm), quercetin (Km, 35 μm), eriodictyol (Km, 75 μm), 5-hydroxyferulic acid (Km, 227 μm), dihydroquercetin (Km, 435 μm), and caffeic acid (Km, 770 μm). Rutin and quercetin 3-O-glucoside were poor substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of p-coumaric acid, m-coumaric acid, ferulic acid, isoferulic acid, sinapic acid, apigenin, or naringenin. While the isoflavones biochanin A and daidzein did not serve as substrates, texasin (6,7-dihydroxy-3′-methoxyisoflavone) was methylated (Km, 35 μm). The methylation of caffeic acid and quercetin showed a pH optimum of 8.6–8.9. The enzyme required Mg2+ ions for maximum activity (approximately 1 mm) and could be totally inhibited by EDTA (10 mm). The Km for S-adenosyl-l-methionine was 11 μm. S-Adenosyl-l-homocysteine inhibited the methylation of luteolin by S-adenosyl-l-methionine.  相似文献   

13.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   

14.
The conversion of p-coumaric acid to p-hydroxybenzoic acid was demonstrated in vitro in both potato tuber and P. hispidus. The mechanism of the enzyme system is non-oxidative. This is the first report of a cell free system which is capable of converting a C6-C3 acid to the corresponding C6-C1 derivative from a fungus.  相似文献   

15.
In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E2 and 4-OH-E2, respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E2 in a concentration-dependent manner, with IC50 values of 1.3–1.4 and 6.3–12.5 μM, respectively, and they also inhibited the O-methylation of 4-OH-E2, with IC50 values of 0.7–0.8 and 1.3–3.1 μM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E2, but it exerted a weaker inhibition of the O-methylation of 4-OH-E2. Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.  相似文献   

16.
The amount of hexosamines and acid mucopolysaccharides present in the rat secondary palate increases during the critical stages of palatogenesis, namely, rotation and fusion. The synthesis of acid mucopolysaccharides in vivo and in vitro in the palate was determined by the incorporation of 3H-glucosamine and Na2S35O4. The labeled mucopolysaccharides were isolated by DEAE-cellulose chromatography and were identified on the basis of several criteria as hyaluronic acid and sulfated acid mucopolysaccharides. Hyaluronic acid accounted for approximately 60% of the total acid mucopolysaccharides synthesized in the palate both in vivo and in vitro. DON (6-diazo-5-oxonorleucine), a known inhibitor of acid mucopolysaccharide synthesis, inhibited the incorporation of 3H-glucosamine and Na2S35O4 by palatal shelves in vitro by 70%.  相似文献   

17.
The synthesis and characterisation of a novel ruthenium nitrosyl complex with coordinated 4-pyridinehydroxamic acid, [NBu4][cis-RuCl4(4-pyha)NO] (4-pyha=4-pyridinehydroxamic acid, NO=nitric oxide) is reported. [NBu4][cis-RuCl4(4-pyha)NO] was prepared from the precursor, NBu4[trans-RuCl4(dmso-O)NO] (dmso=dimethylsulfoxide) upon treatment with 4-pyridinehydroxamic acid. [NBu4][cis-RuCl4(4-pyha)NO] possesses the linear {RuII(NO)+} moiety and a cis-pyridinehydroxamic acid group which has the potential to act as an NO donor. The crystal structure of [NBu4][cis-RuCl4(4-pyha)NO] was also determined. The nitrosyl complex is novel in that, besides coordinated NO, it also contains a ligand which has the potential to release NO.  相似文献   

18.
In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Δ9Z-C16:1) and oleic acid (Δ9Z-C18:1), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C16:0) and stearic acid (C18:0), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Δ9 and Δ11) and substrate chain-length preferences (i.e., C16:0 and C18:0); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Δ11Z-C18:1), whereas neither Δ11Z-C16:1 nor palmitoleic acid (Δ9Z-C16:1) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.  相似文献   

19.
The diterpene acid content in 10 species of Helianthus has been investigated. Ent-12,16-cyclokauranoic acid, isolated from H. annuus, is converted into a series of 12,16-cyclogibberellins by cultures of Gibberella fujikuroi, mutant B1-41a, and 12,16-cyclogibberellins A9, and A12 have been isolated. Ent-12β-acetoxykaurenoic acid and ent-13(S)-angeloxyatisenoic acid have been isolated from H. decapetalus; the metabolism of ent-13(S)-hydroxyatisenoic acid and atisenoic acid by B1-41a is also described.  相似文献   

20.
GA12-aldehyde obtained from mevalonate via ent-kaurene, ent-kaurenol, ent-kaurenoic acid and ent-7α-hydroxykaurenoic acid in a cell-free system from immature seeds of Cucurbita maxima was converted to GA12 by the same system. When Mn2+ was omitted from the system GA12-aldehyde and GA12 were converted further to several products. Among these GA15, GA24, GA36 and GA37 were conclusively identified by GC-MS. With the exception of GA37 these GAs have not previously been found in higher plants. Another biosynthetic pathway led from ent-7α-hydroxykaurenoic acid to very polar products via what was tentatively identified as ent-6α, 7α-dihydroxykaurenoic acid. An unidentified component with an MS resembling that of a dihydroxykaurenolide was also obtained from incubations with mevalonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号