首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Raman spectra of polycrystalline stearic acid-d0, stearic acid-d35, 16:16-d2-18:18:18-d3-stearic acid, 18:18:18-d3-stearic acid, 17:17-d2-stearic acid, 17-d1-stearic acid, 16:16-d2-stearic acid, 12:12-d2-stearic acid and 12-d1-stearic acid have been obtained for the region containing the C-D and C-H stretching vibrations. Assignments of the methyl, methyl-d3, methylene, methylene-d2 and methylene-d1 stretching vibrations are discussed.  相似文献   

2.
A new natural product, 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid (G3) has been isolated from seeds of Gleditsia caspica. The structure has been established by chemical and spectroscopic methods. Catalytic reduction of G3 yields 2(S),4(S)-4-methylglutamic acid and a new amino acid, 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid. Ozonolysis of G3 followed by oxidation gives 2(S),3(R)-3-hydroxyaspartic acid. The S- (or l-) configurations at C2 in G3 and in 2(S),3(S),4(S)-3-hydroxy-4-methyglutamic acid and the S-configurations at C3 for G3 and 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid and at C4 for 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid are inferred from the configurations at C2 in 2(S),4(S)-4-methylglutamic acid and at C2 and C3 in 2(S),3(R)-3-hydroxyaspartic acid. The seeds also contain appreciable quantities of 2(S),3(S),4(R)-3-hydroxy-4-methylglutami c acid (G1) and 2(S),4(R)-4-methylglutamic acid.  相似文献   

3.
Quinolinic acid phosphoribosyltransferase (EC 2.4.2.19) was purified 3600-fold from rat liver and 280-fold from rat brain. Kinetic analyses (Km = 12 μM for the substrate quinolinic acid and Km 23 μM for the cosubstrate phosphoribosylpyrophosphate), physicochemical properties of the purified enzymes, inhibition by phthalic acid (Ki = 1.4 μM) and molecular weight determination (Mr 160 000 for the holoenzyme, consisting of five identical 32 kDa subunits) indicated the structural identity of quinolinic acid phosphoribosyltransferase from the two rat tissues. This was further confirmed immunologically, using antibodies raised against purified rat liver quinolinic acid phosphoribosyltransferase. Rat quinolinic acid phosphoribosyltransferase differs in several aspects from quinolinic acid phosphoribosyltransferase isolated from other organisms. The purified enzyme will prove a useful tool in the examination of a possible role of quinolinic acid in cellular function and/or dysfunction.  相似文献   

4.
A GC–EIMS method to determine the structure of the fatty acid chains in cyclic lipopeptides is described. The structure of the fatty acid chains can be determined by the characteristic peaks of the MS spectrogram according to the fact that the alpha cleavage predominates the MS of a fatty acid with amino and hydroxy groups, while the McLafferty rearrangement predominates the MS of one without amino or hydroxy group. The characteristics of the strongest peaks of 103 and 102 in MS spectrograms due to alpha cleavage represent the β-hydroxy-fatty acid and the β-amino fatty acid, respectively; the strongest peak of 117 due to alpha cleavage and the relatively weak peak of 88 due to McLafferty rearrangement indicate the β-hydroxy-fatty acid with a branched methyl group at its alpha position. The strongest peak of 74 due to McLafferty suggests the fatty acid without hydroxy or amino group. The ratio of relative intensity (I43/I57) characterizes the branches of alkyl chains. The greater I43/I57 corresponds to an iso alkyl, and the smaller I43/I57 corresponds to an anteiso alkyl. This method can be used to determine the full structure of the fatty acid chains in lipopeptides.  相似文献   

5.
A 3-O-methyltransferase which catalyzes the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified about 60-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The enzyme utilized, in addition to caffeic acid (Km = 133 μM), 5-hydroxyferulic acid (Km = 55 μM), 3,4,5-trihydroxy-cinnamic acid (Km = 100 μM), and protocatechualdehyde (Km = 50 μM) as substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of ferulic acid, of ortho-, meta-, and para-coumaric acids, and of the flavonoid compounds quercetin and luteolin. The methylation of caffeic acid and 5-hydroxyferulic acid showed a pH optimum at 6.5–7.0. No stimulation of the reaction velocity was observed when Mg2+ ions were added. EDTA did not inhibit the reaction. The Km for S-adencsyl-l-methionine was 15 μm. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine (Ki = 6.9 μM).  相似文献   

6.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   

7.
Fatty acid delta 6-desaturase (D6DES) and elongases are key enzymes in the synthesis of polyunsaturated fatty acids (PUFAs) including arachidonic acid (ARA) and eicosapentaenoic acid (EPA) from microorganisms to higher animals. To identify the genes encoding D6DES and elongases for PUFAs, we isolated each cDNA with a high similarity to the D6DES and ELOVL5-like elongases of mammals and fishes via degenerate PCR and RACE-PCR from Acanthopagrus schlegelii. A recombinant vector expressing AsD6DES was subsequently constructed and transformed into Saccharomyces cerevisiae to test the enzymatic activity toward n-6 and n-3 fatty acids in the PUFA biosynthesis. The heterologously expressed AsD6DES produced γ-linolenic acid (GLA, C18:3 n-6) and stearidonic acid (STA, C18:4 n-3) at conversion rates of 26.3–35.6 % from exogenous linoleic acid (LA, C18:2 n-6) and α-linolenic acid (ALA, C18:3 n-3) substrates, respectively. When AsELOVL5 was expressed in yeast, it conferred an ability to elongate GLA to di-homo-γ-linolenic acid (DGLA, C20:3 n-6). In addition, AsELOVL5 showed an ability to convert ARA (C20:4 n-6) and EPA (C20:5 n-3) to dodecylthioacetic acid (DTA, C22:4 n-6) and docosapentaenoic acid (DPA, C22:5 n-3), respectively. In these results, the AsD6DES encodes a delta 6-fatty acid desaturase and the AsELOVL5 encoding a long-chain fatty acid elongase shows activity to enlongate C18Δ6/C20Δ5, but not C22.  相似文献   

8.
The conversion of p-coumaric acid to p-hydroxybenzoic acid was demonstrated in vitro in both potato tuber and P. hispidus. The mechanism of the enzyme system is non-oxidative. This is the first report of a cell free system which is capable of converting a C6-C3 acid to the corresponding C6-C1 derivative from a fungus.  相似文献   

9.
The effects of tetrahydroisoquinolinecarboxylic acids, derived from dopamine and various phenylpyruvates, on the enzyme tyrosine 3-monooxygenase have been investigated. Using a partially purified tyrosine 3-monooxygenase from bovine adrenal medulla, 3′,4′-deoxynorlaudanosolinecarboxylic acid was found to be a mixed inhibitor against the cofactor (Ki = 122 μM), equipotent with norepinephrine. Norlaudanosolinecarboxylic acid inhibited tyrosine 3-monooxygenase competitively with respect to the cofactor (Ki = 126 μM). When tyrosine 3-monooxygenase activity in catecholamine-free striatal homogenates was studied, again 3′,4′-deoxynorlaudanosolinecarboxylic acid (Ki = 40 μM) behaved as a mixed inhibitor whereas norlaudanosolinecarboxylic acid (Ki = 136 μM) was competitive. When the rat striatal tyrosine 3-monooxygenase was subjected to phosphorylating conditions in vitro, decreases in the Ki of norlaudanosolinecarboxylic acid and in that of 3′,4′-deoxynorlaudanosolinecarboxylic acid were observed, whereas the Ki of dopamine was increased. Tyrosine 3-monooxygenase activity in rat striatal synaptosomes was also inhibited by 3′,4′-deoxynorlaudanosolinecarboxylic acid (IC50 = 100 μm) and phosphorylating conditions affected only that inhibition produced by dopamine, but not that by the tetrahydroisoquinolinecarboxylic acids. The results are discussed in relation to the structure of the tetrahydroisoquinolinecarboxylic acids and their possible role in vivo.  相似文献   

10.
The diterpene acid content in 10 species of Helianthus has been investigated. Ent-12,16-cyclokauranoic acid, isolated from H. annuus, is converted into a series of 12,16-cyclogibberellins by cultures of Gibberella fujikuroi, mutant B1-41a, and 12,16-cyclogibberellins A9, and A12 have been isolated. Ent-12β-acetoxykaurenoic acid and ent-13(S)-angeloxyatisenoic acid have been isolated from H. decapetalus; the metabolism of ent-13(S)-hydroxyatisenoic acid and atisenoic acid by B1-41a is also described.  相似文献   

11.
GA12-aldehyde obtained from mevalonate via ent-kaurene, ent-kaurenol, ent-kaurenoic acid and ent-7α-hydroxykaurenoic acid in a cell-free system from immature seeds of Cucurbita maxima was converted to GA12 by the same system. When Mn2+ was omitted from the system GA12-aldehyde and GA12 were converted further to several products. Among these GA15, GA24, GA36 and GA37 were conclusively identified by GC-MS. With the exception of GA37 these GAs have not previously been found in higher plants. Another biosynthetic pathway led from ent-7α-hydroxykaurenoic acid to very polar products via what was tentatively identified as ent-6α, 7α-dihydroxykaurenoic acid. An unidentified component with an MS resembling that of a dihydroxykaurenolide was also obtained from incubations with mevalonate.  相似文献   

12.
Fatty Acids of Myxococcus xanthus   总被引:9,自引:4,他引:5       下载免费PDF全文
Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria.  相似文献   

13.
By GC-MS the following acidic constituents of the endosperm of Echinocystis macrocarpa were identified: abscisic acid and its trans,trans-isomer, 4′-dihydrophaseic acid, GA4, GA7, iso-GA7, GA24, GA25, two isomers of GA13, GA43, ent-6α,7α,17-trihydroxy-16αH-kauran-19-oic acid and ent-6α,7α, 16β, 17-tetrahydroxykauran- 19-oic acid. The structures of the last three new natural products were confirmed by partial synthesis. ent-Kaurene was detected in the neutral fraction.  相似文献   

14.
Gibberellin A1 (GA1), 3-epi-GA1, GA4, GA9, 11α-hydroxyGA12, 12α-hydroxyGA12, GA15, GA17, GA19, GA20, GA25, GA37, GA40, GA58, GA69, GA70, and GA71 have been identified from Kovats retention indices and full scan mass spectra by capillary GC-MS analyses of purified extracts from sporophytes of the tree fern, Cibotium glaucum. Abscisic acid, dihydrophaseic acid, an epimer of 4′-dihydrophaseic acid, and the epimeric ent-6α, 7α, 16α, 17-(OH)4 and ent-6α, 7α, 16β, 17-(OH)4 derivatives of ent16, 17-dihydrokaurenoic acid, in addition to the epimeric 16α, 17- and 16β, 17-dihydroxy-16, 17-dihydro derivatives of GA12, were also identified in extracts of C. glaucum. An oxodihydrophaseic acid and a hydroxydihydrophaseic acid were also detected. In extracts of sporophytes of Dicksonia antarctica, GA4, GA9, 12α- and 12β-hydroxyGA12, GA15, GA25, and GA37 were identified by the same criteria, as well as abscisic acid, phaseic acid, 8′-hydroxymethylabscisic acid and dihydrophaseic acid. This is the first time that GA40 has been identified in a higher plant; it is also the first report of the natural occurrence of the two gibberellins, 11α- and 12β-hydroxyGA12. The total gibberellin (GA) content in C. glaucum (tall) was at least one order of magnitude greater than that of D. antarctica (dwarf) based on total ion current response in GC-MS and bioassay data. Abscisic acid was a major component of D. antarctica and the oxodihydrophaseic acid was a major component of C. glaucum.  相似文献   

15.
The structure and composition of the cutin monomers from the flower petals of Vicia faba were determined by hydrogenolysis (LiAlH4) or deuterolysis (LiAlD4) followed by thin layer chromatography and combined gas-liquid chromatography and mass spectrometry. The major components were 10, 16-dihydroxyhexadecanoic acid (79.8%), 9, 16-dihydroxyhexadecanoic acid (4.2%), 16-hydroxyhexadecanoic acid (4.2%), 18-hydroxyoctadecanoic acid (1.6%), and hexadecanoic acid (2.4%). These results show that flower petal cutin is very similar to leaf cutin of V. faba. Developing petals readily incorporated exogenous [1-14C]palmitic acid into cutin. Direct conversion of the exogeneous acid into 16-hydroxyhexadecanoic acid, 10, 16-dihydroxy-, and 9, 16-dihydroxyhexadecanoic acid was demonstrated by radio gas-liquid chromatography of their chemical degradation products. About 1% of the exogenous [1-14C]palmitic acid was incorporated into C27, C29, and C31n-alkanes, which were identified by combined gas-liquid chromatography and mass spectrometry as the major components of the hydrocarbons of V. faba flowers. The radioactivity distribution among these three alkanes (C27, 15%; C29, 48%; C31, 38%) was similar to the per cent composition of the alkanes (C27, 12%; C29, 43%; C31, 44%). [1-14C]Stearic acid was also incorporated into C27, C29, and C31n-alkanes in good yield (3%). Trichloroacetate, which has been postulated to be an inhibitor of fatty acid elongation, inhibited the conversion of [1-14C]stearic acid to alkanes, and the inhibition was greatest for the longer alkanes. Developing flower petals also incorporated exogenous C28, C30, and C32 acids into alkanes in 0.5% to 5% yields. [G-3H]n-octacosanoic acid (C28) was incorporated into C27, C29, and C31n-alkanes. [G-3H]n-triacontanoic acid (C30) was incorporated mainly into C29 and C31 alkanes, whereas [9, 10, 11-3H]n-dotriacontanoic acid (C32) was converted mainly to C31 alkane. Trichloroacetate inhibited the conversion of the exogenous acids into alkanes with carbon chains longer than the exogenous acid, and at the same time increased the amount of the direct decarboxylation product formed. These results clearly demonstrate direct decarboxylation as well as elongation and decarboxylation of exogenous fatty acids, and thus constitute the most direct evidence thus far obtained for an elongation-decarboxylation mechanism for the biosynthesis of alkanes.  相似文献   

16.
The synthesis and characterisation of a novel ruthenium nitrosyl complex with coordinated 4-pyridinehydroxamic acid, [NBu4][cis-RuCl4(4-pyha)NO] (4-pyha=4-pyridinehydroxamic acid, NO=nitric oxide) is reported. [NBu4][cis-RuCl4(4-pyha)NO] was prepared from the precursor, NBu4[trans-RuCl4(dmso-O)NO] (dmso=dimethylsulfoxide) upon treatment with 4-pyridinehydroxamic acid. [NBu4][cis-RuCl4(4-pyha)NO] possesses the linear {RuII(NO)+} moiety and a cis-pyridinehydroxamic acid group which has the potential to act as an NO donor. The crystal structure of [NBu4][cis-RuCl4(4-pyha)NO] was also determined. The nitrosyl complex is novel in that, besides coordinated NO, it also contains a ligand which has the potential to release NO.  相似文献   

17.
Wild-type cells of the unicellular rhodophyte, Cyanidium caldarium, synthesize chlorophyll a, phycobiliproteins, and heme from δ-aminolevulinic acid during light-dependent chloroplast development but are unable to make photosynthetic pigments in the dark. C. caldarium, mutant GGB-Y, is an obligate heterotroph which, in the light, produces a chloroplast devoid of photosynthetic pigments. The present investigation has shown that δ-aminolevulinic acid is synthesized in cells of mutant GGB-Y incubated with levulinic acid, a competitive inhibitor of δ-aminolevulinic acid dehydrase (the second enzyme in the porphyrin biosynthetic pathway). In vivo, cells of mutant GGB-Y preferentially incorporated C1 of glutamate and α-ketoglutarate into the C5 fragment (formaldehyde) of δ-aminolevulinic acid after alkaline periodate degradation. This suggested that δ-aminolevulinic acid arises directly from the carbon skeleton of glutamate and α-ketoglutaric acid. The pattern of incorporation of C3, C4, and C5 of α-ketoglutarate into the C1–C4 (succinic acid) fragment of δ-aminolevulinic acid after alkaline periodate degradation was consistent with the origin of δ-aminolevulinic acid from a five-carbon precursor. C1 and C2 of glycine and C2 and C3 of succinate were incorporated into both the formaldehyde and succinate fragments of δ-aminolevulinic acid in a manner inconsistent with condensation of glycine and succinyl CoA by δ-aminolevulinic acid synthetase, the rate-limiting enzyme in the porphyrin pathway in animals and bacteria. Extracts of the soluble protein from cells of mutant GGB-Y displayed a Soret band at 410 nm indicating the presence of hemoproteins. This shows that mutant GGB-Y cells synthesize heme. The respiration of radiolabeled glutamate, α-ketoglutarate, and glycine to 14CO2 is consistent with the existence of mitochondrial cytochromes in cells of mutant GGB-Y and with the ability of the mutant to synthesize δ-aminolevulinic acid. The present results suggest that δ-aminolevulinic acid is synthesized directly from glutamate or α-ketoglutarate and that this is the only process by which the rate-limiting intermediate in the porphyrin pathway is synthesized in C. caldarium. If correct, the rate-limiting, regulative enzyme in the biosynthetic pathway for synthesis of chlorophyll a, bile pigment (phycocyanobilin), and heme must have been completely different in the evolutionary antecedents of modern-day plants and animals.  相似文献   

18.
Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection.  相似文献   

19.
The functions of two long-chain fatty acid CoA ligase genes (facl) in crude oil-degrading Geobacillus thermodenitrificans NG80-2 were characterized. Facl1 and Facl2 encoded by GTNG_0892 and GTNG_1447 were expressed in Escherichia coli and purified as His-tagged fusion proteins. Both enzymes utilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid (C30). The most preferred substrates were capric acid (C10) for Facl1 and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of 60 °C, an optimal pH of 7.5, and required ATP as a cofactor. Thermostability of the enzymes and effects of metal ions, EDTA, SDS and Triton X-100 on the enzyme activity were also investigated. When NG80-2 was cultured with crude oil rather than sucrose as the sole carbon source, upregulation of facl1 and facl2 mRNA was observed by real time RT-PCR. This is the first time that the activity of fatty acid CoA ligases toward long-chain fatty acids up to at least C30 has been demonstrated in bacteria.  相似文献   

20.
A novel acyltransferase from cotyledons of tomato (Lycopersicon esculentum Mill.), which catalyzes the transfer of caffeic acid from chlorogenic acid (5-O-caffeoylquinic acid) to glucaric and galactaric acids, was purified with a 2400-fold enrichment and a 4% recovery. The enzyme showed specific activities (theoretical Vmax per milligram of protein) of 625 nanokatals (caffeoylglucaric acid formation) and 310 nanokatals (caffeoylgalactaric acid formation). On sodium dodecyl sulfate-polyacrylamide gel electrophoresis it gave an apparent Mr of 40,000, identical to the value obtained by gel filtration column chromatography. Highest activity was found at pH 5.7, which was constant over a range of 20 to 120 millimolar K-phosphate. The isoelectric point of the enzyme was at pH 5.75. The reaction temperature optimum was at 38°C and the apparent energy of activation was calculated to be 57 kilojoules per mole. The apparent Km values were 0.4 millimolar for glucaric acid, 1.7 millimolar for galactaric acid, and with both acceptors as second substrates 20 millimolar for chlorogenic acid. The relative ratio of the Vmax/Km values for glucaric acid and galactaric acid was found to be 100:12. Substrate-competition experiments support the conclusion that one single enzyme is responsible for both the glucaric and galactaric acid ester formation with marked preference for glucaric acid. It is proposed that the enzyme be called chlorogenic acid:glucaric acid O-caffeoyltransferase (EC 2.3.1.-). The three caffeic acid-dependent enzyme activities involved in the formation of the glucaric and galactaric acid esters, the chlorogenic acid:glucaric acid caffeoyltransferase as the key activity as well as the caffeic acid:CoA ligase and the caffeoyl-CoA:quinic acid caffeoyltransferase as the preceding activities, were determined. The time course of changes in these activities were followed during development of the seedling in the cotyledons and growth of the young plant in the first and second leaf. The results from tomato seedlings suggest a sequential appearance of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号