首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.  相似文献   

2.
3.
4.
5.
DNA methylation and polycomb proteins are well-known mediators of epigenetic silencing in mammalian cells. Usually described as mutually exclusive, this statement is today controversial and recent in vitro studies suggest the co-existence of both repressor systems. We addressed this issue in the study of Retinoic Acid Receptor β (RARβ), a tumor suppressor gene frequently silenced in prostate cancer. We found that the RARβ promoter is hypermethylated in all studied prostate tumors and methylation levels are positively correlated with H3K27me3 enrichments. Thus, by using bisulfite conversion and pyrosequencing of immunoprecipitated H3K27me3 chromatin, we demonstrated that DNA methylation and polycomb repression co-exist in vivo at this locus. We found this repressive association in 6/6 patient tumor samples of different Gleason score, suggesting a strong interplay of DNA methylation and EZH2 to silence RARβ during prostate tumorigenesis.  相似文献   

6.
7.
8.
9.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   

10.
11.
12.
Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.  相似文献   

13.
14.
Epigenetic mechanisms have important roles in carcinogenesis. We certified that the mRNA translation-related gene cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is hypomethylated and overexpressed in glioma cells and tissues. The knockdown of CPEB1 reduced cell senescence by regulating the expression or distribution of p53 in glioma cells. CPEB1 is also regulated directly by the tumor suppressor miR-101, a potential marker of glioma. It is known that the histone methyltransferase enhancer of zeste homolog 2 (EZH2) and embryonic ectoderm development (EED) are direct targets of miR-101. We demonstrated that miR-101 downregulated the expression of CPEB1 through reversing the methylation status of the CPEB1 promoter by regulating the presence on the promoter of the methylation-related histones H3K4me2, H3K27me3, H3K9me3 and H4K20me3. The epigenetic regulation of H3K27me3 on CPEB1 promoter is mediated by EZH2 and EED. EZH2 has a role in the regulation of H3K4me2. Furthermore, the downregulation of CPEB1 induced senescence in a p53-dependent manner.  相似文献   

15.
16.
17.
18.
Numerous changes in epigenetic mechanisms have been described in various types of tumors. In search for new biomarkers, we investigated the expression of Polycomb-group (PcG) proteins EZH2, BMI1 and SUZ12 and associated histone modification H3K27me3 in colorectal cancer. Nuclear expression of PcG proteins and histone modification H3K27me3 were immunohistochemically (IHC) stained on a tissue microarray (TMA), including 247 tumor tissues and 47 normal tissues, and scored using the semi-automated Ariol system. Tumor tissues showed higher expression of EZH2 (p = 0.05) and H3K27me3 (p<0.001) as compared to their normal counterparts. Combined marker trend analyses indicated that an increase in the number of markers showing high expression was associated with better prognosis. High expression of all four markers in the combined marker analyses was correlated with the best patient survival and the longest recurrence-free survival, with overall survival (p = 0.01, HR 0.42(0.21–0.84)), disease-free survival (p = 0.007, HR 0.23(0.08–0.67) and local recurrence-free survival (p = 0.02, HR 0.30(0.11–0.84)). In conclusion, we found that expression of PcG proteins and H3K27me3 showed prognostic value in our study cohort. Better stratification of patients was obtained by combining the expression data of the investigated biomarkers as compared to the individual markers, underlining the importance of investigating multiple markers simultaneously.  相似文献   

19.
20.
《Epigenetics》2013,8(6):404-414
Polycomb-mediated gene silencing and DNA methylation underlie many epigenetic processes important in normal development as well as in cancer. An interaction between EZH2 of the Polycomb repressive complex 2 (PRC2), which trimethylates lysine 27 on Histone 3 (H3K27me3), and all three DNA methyltransferases (DNMTs) has been demonstrated, implicating a role for PRC2 in directing DNA methylation. Interestingly, however, the majority of H3K27me3 marked genes lack DNA methylation in ES cells, indicating that EZH2 recruitment may not be sufficient to promote DNA methylation. Here, we employed a Gal4DBD/gal4UAS-based system to directly test if EZH2 binding at a defined genomic site is sufficient to promote de novo DNA methylation in a murine erythroleukaemia cell line. Targeting of a Gal4DBD-EZH2 fusion to an intergenic transgene bearing a gal4 binding-site array promoted localized recruitment of SUZ12 and BMI1, subunits of PRC2 and PRC1, respectively, and deposition of H3K27me3. Further analysis of the H3K27me3-marked site revealed the persistence of H3K4me2, a mark inversely correlated with DNA methylation. Strikingly, while DNMT3a was also recruited in an EZH2-dependent manner, de novo DNA methylation of the transgene was not observed. Thus, while targeting of EZH2 to a specific genomic site is sufficient for recruitment of DNMT3a, additional events are required for de novo DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号