首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contracting (superprecipitating) clearing and fully contracted (previously superprecipitated) actomyosin molecules the presteady state phosphate burst was found to be 2 nanomoles inorganic phosphate (Pi) per nanomole myosin. In these muscle models a significant difference in the Mg2+ ATPase activity was found following the initial phosphate burst. Between 120 and 800 milliseconds after the commencement of the reaction the Mg2+ ATPase activity of contracting actomyosin molecules was 5-10 times greater than that of the fully contracted or clearing actomyosin molecules. In the same time interval the rate of turbidity increase of the contracting actomyosin molecules was about 10 fold greater than during the remainder of the time to reach maximal superprecipitation. This high initial ATPase activity found to be present only in the contracting actomyosin molecules and coinciding with the high rate of the velocity of contraction provides sufficient energy for contraction. We propose that this high Mg2+--ATPase activity following the initial burst and included as a part of "conventional" steady state ATPase activity is the source of energy for muscular contraction. Calculation of kinetic and thermodynamic constants indicates that the contracting actomyosin molecule is subjected to a conformational change. As a consequence of contraction the complementarity of the enzyme site to the intermediate complex decreases about 100 fold. Thus the contracted molecules temporarily become relatively refractive to provide energy for the contractile process. In our opinion these findings are important with regard to muscular contraction.  相似文献   

2.
3.
The effects of 2,3-butanedione 2-monoxime (BDM) on mechanical responses of glycerinated fibers and the ATPase activity of heavy meromyosin (HMM) and myofibrils have been studied using rabbit skeletal muscle. The mechanical responses and the ATPase activity were measured in similar conditions (ionic strength 0.06-0.2 M, 0.4-4 mM MgATP, 0-20 mM BDM, 2-20 degrees C and pH 7.0). BDM reversibly reduced the isometric tension, shortening speed, and instantaneous stiffness of the fibers. BDM also inhibited myofibrillar and HMM ATPase activities. The inhibitory effect on the relative ATPase activity of HMM was not influenced by the addition of actin or troponin-tropomyosin-actin. High temperature and low ionic strength weakened BDM's suppression of contraction of the fibers and the ATPase activity of contracting myofibrils, but not of the HMM, acto-HMM and relaxed myofibrillar ATPase activity. The size of the initial phosphate burst at 20 degrees C was independent of the concentration of BDM. These results suggest that the suppression of contraction of muscle fibers is due mainly to direct action of BDM on the myosin molecules.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  相似文献   

11.
We studied the effect of deuterium oxide (D(2)O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D(2)O increased the maximum isometric force P(0) by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load V(max) did not change appreciably in D(2)O, so that the force-velocity (P-V) curve was scaled depending on the value of P(0). The Mg-ATPase activity of the fibers during generation of steady isometric force P(0) was reduced by about 50% in D(2)O. Based on the Huxley contraction model, these results can be accounted for in terms of D(2)O-induced changes in the rate constants f(1) and g(1) for making and breaking actin-myosin linkages in the isometric condition, in such a way that f(1)/(f(1)+g(1)) increases by about 20%, while (f(1)+g(1)) remains unchanged. The D(2)O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   

12.
We studied the effect of deuterium oxide (D2O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D2O increased the maximum isometric force P0 by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load Vmax did not change appreciably in D2O, so that the force-velocity (P-V) curve was scaled depending on the value of P0. The Mg-ATPase activity of the fibers during generation of steady isometric force P0 was reduced by about 50% in D2O. Based on the Huxley contraction model, these results can be accounted for in terms of D2O-induced changes in the rate constants f1 and g1 for making and breaking actin-myosin linkages in the isometric condition, in such a way that f1/(f1+g1) increases by about 20%, while (f1+g1) remains unchanged. The D2O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   

13.
The independent force generator and the power-stroke cross-bridge model have dominated the thinking on mechanisms of muscular contraction for nearly the past five decades. Here, we review the evolution of the cross-bridge theory from its origins as a two-state model to the current thinking of a multi-state mechanical model that is tightly coupled with the hydrolysis of ATP. Finally, we emphasize the role of skeletal muscle myosin II as a molecular motor whose actions are greatly influenced by Brownian motion. We briefly consider the conceptual idea of myosin II working as a ratchet rather than a power stroke model, an idea that is explored in detail in the companion paper.  相似文献   

14.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60–80% in various preparations of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

15.
16.
Abstract Effects of various inhibitors on the intracellular accumulation of glycerol and inorganic ions in a salt-tolerant yeast, Zygosaccharomyces rouxii , were examined for several hours during NaCl-induced salt stress. Cycloheximide strongly inhibited the intracellular accumulation of glycerol during salt stress but chloramphenicol did not. Rapid activation of plasma-membrane ATPase was apparent within 5 min after the start of salt stress and after 1 h a second, slower activation occurred. ATP was maintained at a higher level during salt stress than that in its absence. Experiments with various other inhibitors demonstrated a close relationship between synthesis of glycerol, activation of plasma membrane ATPase and increases in levels of ATP. These results suggest that activation by salt stress of plasma-membrane ATPase may trigger the synthesis of glycerol for osmoregulation.  相似文献   

17.
18.
Caldesmon induces inhibition of MG2+-ATPase activity of actomyosin and relaxation of skinned fibers of chicken gizzard smooth muscle without influencing the level of myosin light chain-1 phosphorylation. Both these effects are reversed by calmodulin at a high molar excess over caldesmon in the presence of Ca2+.  相似文献   

19.
The effect of the natural ATPase inhibitor and octylguanidine on the ATPase activity of soluble oligomycin-insensitive mitochondrial F1 were compared. Both compounds induced a maximal inhibition of 60-80% in various preparation of F1 studied. The inhibition was of the uncompetitive type with respect to MgATP, and the action of the compounds was partially additive. The data suggest that octylguanidine reproduces the action of the natural ATPase inhibitor. Alkylammonium salts also affect the ATPase activity in a similar form. F1 bound to Sepharose-hexylammonium is largely inactive, whilst free hexylammonium at higher concentrations induces only a partial inhibition of the activity. This suggests that the degree of immobilization of F1 is related to the magnitude of inhibition of ATPase activity induced by alkyl cations. The binding of F1 to Sepharose-hexylammonium is prevented by high concentrations of Na+ or K+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号