首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of brain injury during reperfusion appears to depend on the experimental pattern of ischemia/reperfusion. The goals of this study were: first, to identify the rate of free radicals generation and the antioxidant activity during ischemia and reperfusion by means of biochemical measurement of lipid peroxidation (LPO) and both enzymatic (superoxid dismutase - SOD, catalase - CAT, glutathion peroxidase - GPx) and non-enzymatic antioxidants activity (glutathione - GSH); and second, to try to find out how the pattern of reperfusion may influence the balance between free radical production and clearance. Wistar male rats were subject of four-vessel occlusion model (Pulsinelly & Brierley) cerebral blood flow being controlled by means of two atraumatic arterial microclamps placed on carotid arteries. The level of free radicals and the antioxidant activity were measured in ischemic rat brain tissue homogenate using spectrophotometrical techniques. All groups subjected to ischemia shown an increase of LPO and a reduction of the activity of enzymatic antioxidative systems (CAT, GPx, SOD) and non-enzymatic systems (GSH). For both groups subjected to ischemia and reperfusion, results shown an important increase of LPO but less significant than the levels found in the group with ischemia only. Statistically relevant differences (p<0.01) between continuous reperfusion and fragmented reperfusion were observed concerning the LPO, CAT, SOD and GSH levels, oxidative aggresion during fragmented reperfusion being more important.  相似文献   

2.
3.
In previous study, we found that the reduced exercise-induced production of reactive oxygen species (ROS) reported in slow-oxidative muscle of hypoxemic rats and also in chronic hypoxemic patients did not simply result from deconditioning. In control rats and after a 3-week period of hindlimb suspension (HS), the slow-oxidative (Soleus, SOL) and fast-glycolytic skeletal muscles (Extensor digitorum longus, EDL) were sampled. We determined the response to direct muscle stimulation (twitch stimulation (TS), Maximal force (Fmax)), twitch amplitude and maximal relaxation rate, tetanic frequency, endurance to fatigue after muscle stimulation (MS), the different fibre types based on their myofibrillar adenosinetriphosphatase (ATPase) activity, and the intra-muscular redox status (Thiobarbituric Acid Reactive Sustances: TBARS, reduced glutathione: GSH, reduced ascorbic acid: RAA). After the 3-w HS period: (1) the contractile properties were modified in SOL only (reduced Fmax and twitch amplitude, increased tetanic frequency); (2) the fibre typology was modified in both muscles (in SOL: increased proportion of IIa and IIc fibres, in EDL: increased proportion of IId/x fibres but decreased proportion of IIb fibres); and (3) only in SOL, the TBARS level increased and the GSH and RAA concentrations decreased at rest and after fatiguing MS. Thus, HS accentuates the exercise-induced ROS production in slow-oxidative muscle in a direction opposite to that measured in chronic hypoxemic rats. This strongly suggests that hypoxemia reduces the ROS production independently from any muscle disuse.  相似文献   

4.
5.
The purpose of this study was to determine the effect of leucine supplementation on indices of muscle damage following eccentric-based resistance exercise. In vitro, the amino acid leucine has been shown to reduce proteolysis and stimulate protein synthesis. Twenty-seven untrained males (height 178.6 ± 5.5 cm; body mass 77.7 ± 13.5 kg; age 21.3 ± 1.6 years) were randomly divided into three groups; leucine (L) (n = 10), placebo (P) (n = 9) and control (C) (n = 8). The two experimental groups (L and P) performed 100 depth jumps from 60 cm and six sets of ten repetitions of eccentric-only leg presses. Either leucine (250 mg/kg bm) or placebo was ingested 30 min before, during and immediately post-exercise and the morning of each recovery day following exercise. Muscle function was determined by peak force during an isometric squat and by jump height during a static jump at pre-exercise (PRE) and 24, 48, 72, and 96 h post-exercise (24, 48, 72, 96 h). Additionally, at these time points each group’s serum levels of creatine kinase (CK) and myoglobin (Mb) along with perceived feelings of muscle soreness were determined. None of the C group dependent variables was altered by the recurring testing procedures. Peak force was significantly decreased across all time points for both experimental groups. The L group experienced an attenuated drop in mean peak force across all post-exercise time points compared to the P group. Jump height significantly decreased from PRE for both the L and P group at 24 h and 48 h. CK and Mb was significantly elevated from PRE for both experimental groups at 24 h. Muscle soreness increased across all time points for the both the L and P group, and the L group experienced a significantly higher increase in mean muscle soreness post-exercise. Following exercise-induced muscle damage, high-dose leucine supplementation may help maintain force output during isometric contractions, however, not force output required for complex physical tasks thereby possibly limiting its ergogenic effectiveness.  相似文献   

6.
Abdominal neutrophils effect on rat skeletal muscle m. soleus was investigated in vitro. The incubation was carried out in Hanks balanced solution within 24 hrs. It was a release of proteins from m. soleus 1 hr later. Creatine kinase (CK) and aspartate aminotransferase (AAT) activities increase was detected in incubation medium. The neutrophils released their proteins quicker than muscles. A dramatic inhibition of CK and AAT activities took place during coincubation of m. soleus and neutrophils. Zymosan-activated cells had a higher inhibition potency in comparison to nonactivated neutrophils. Analysis of proteinase and myeloperoxidase activities in incubation medium has given evidence that CK and AAT inhibition by non-activated neutrophils mainly depends on cell-secreted proteinases. Zymosan-activated neutrophil inhibition of CK and AAT consists of proteinases and myeloperoxidase effects. AAT appeared to be more resistant than CK to the damage by neutrophils. The used approach failed to demonstrate the direct damage effect of neutrophils on m. soleus, but the described enzyme inhibition mechanism can take place in vivo during leukocyte infiltration of skeletal muscles after intensive muscular activity.  相似文献   

7.
Neutrophil infiltration to the tissue, which is one of the important pathogenetic factors in ischemia/reperfusion injury, can be inhibited by glucocorticoids. The purpose of the present study was to clarify the mechanisms by which glucocorticoids inhibit neutrophil infiltration in renal ischemia/reperfusion injury in rats. Pretreatment with dexamethasone significantly attenuated the enhanced neutrophil infiltration and expression of intercellular adhesion molecule-1 induced by renal ischemia/reperfusion. Treatment with nitroxyl anion releaser known as Angeli's salt abolished the beneficial effect of dexamethasone in renal ischemia/reperfusion. Renal dysfunction and tubular damage induced by renal ischemia/reperfusion were not ameliorated by pretreatment with dexamthasone. These results indicate that the attenuation by dexamethasone of neutrophil infiltration and intercellular adhesion molecule-1 expression during renal ischemia/reperfusion may be mediated by the suppressed production of nitroxyl anion. Thus, neutrophil infiltration in renal ischemia/reperfusion injury may be mediated, at least in part, by the enhanced production of nitroxyl anion.  相似文献   

8.
During recovery after a transient global cerebral ischemia (TGCI), rat electrocorticogram (ECoG) shows epochs of synchronized activity (SA) alternating with epochs of low amplitude background activity (BA). The aim of this study was to compare the changes in these electrical activities during a 30-min recovery period that followed either a noninjuring (3 minutes, N=10) or an injuring (10 minutes, N=10) TGCI. During TGCI there was a 3 fold reduction in amplitudes of both SA and BA but no changes in frequency. During reperfusion following a 3 minutes TGCI, the amplitudes of both SA and BA recovered to about 70%. During the reperfusion that followed a 10 minutes TGCI, BA showed no recovery, whereas SA recovered to about 40%. During the 30 min reperfusion, there was a timedependent decrease in the frequency of SA, but independent on the duration of TGCI. In contrast, the frequency of the BA did not change during reperfusion. Our data indicate that following cerebral ischemia the recovery of SA can take place independently of BA. The lack of recovery in BA may indicate early subcortical neuronal damage.  相似文献   

9.
Summary The purpose of this study was to examine the contention that stimulation-induced damage, resulting in degeneration with subsequent regeneration, plays a major role in the transformation of fibre type brought about by chronic electrical stimulation. Data from histological and histochemical sections of 9-day-stimulated rabbit fast-twitch muscles were analysed with multivariate statistical techniques. Fibre degeneration and regeneration varied non-systematically between sample areas at any given cross-sectional level. In the extensor digitorum longus muscle, but not in the tibialis anterior, there was more degeneration in proximal than in distal portions of the muscle. The extensor digitorum longus muscle consistently showed more degeneration than the tibialis anterior muscle. Degeneration was less extensive for an intermittent pattern of stimulation that delivered half the aggregate number of impulses of continuous stimulation. Degeneration and regeneration varied markedly between individual rabbits in each of the groups. Sections that revealed the most degeneration and regeneration also had more fibres that reacted positively with an anti-neonatal antibody. Rigorous analysis of different sources of variation has helped to explain apparent conflicts in the literature. The incidence of muscle fibre damage in the stimulated tibialis anterior muscle is low, showing that the contribution of degenerative-regenerative phenomena to fibre type conversion in this muscle is insignificant.  相似文献   

10.
The aim of the study was to address discrepant findings in the literature regarding coupling between decreased functional demand during disuse and reduced capillarity. We previously reported [K. Tyml, O. Mathieu-Costello, and E. Noble. Microvasc. Res. 49: 17-32, 1995] that severe disuse of rat extensor digitorum longus (EDL) muscle caused by a 2-wk application of tetrodotoxin (TTX) on the sciatic nerve is not accompanied by capillary loss. Using the same animal model, the present study examined whether this absence of coupling could be explained in terms of 1) too short a duration of disuse and 2) muscle-specific response to disuse. Fischer 344 rats were exposed to either no treatment (control) or to 2- or 8-wk TTX applications. Fiber size, capillary density per fiber cross-sectional area, and capillary-to-fiber (C/F) ratio were determined by morphometry in the EDL muscle (control, 2- and 8-wk groups) and in the superficial portion of medial gastrocnemius (Gas) muscle (control, 2 wk). In both muscles, microvascular blood flow was evaluated by intravital microscopy [red blood cell velocity in capillaries (V(RBC))] and by laser Doppler flowmetry (LDF). Regardless of duration of TTX application or muscle type, TTX-induced disuse resulted in a significant reduction of fiber area (44-71%). However, capillary density increased in EDL muscle (both at 2 and 8 wk) but not in Gas muscle. C/F ratio decreased in EDL muscle at 8 wk (18%) and in Gas muscle (39%). This indicates that the effect on capillarity depended on duration of disuse and on muscle type. V(RBC) and LDF signal were significantly larger in EDL than in Gas muscle. Analysis of change in capillarity vs. V(RBC) suggested that the outcome of disuse may be modulated by blood flow. We conclude that the duration of skeletal muscle disuse per se does not dictate capillary loss, and we hypothesize that discrepant findings of coupling between functional demand and capillarity could be due to the presence/absence of flow-related angiogenesis superimposed on the capillary removal process during disuse.  相似文献   

11.
The effect of transient cerebral ischemia on acetylcholinesterase (AChE) synthesis was studied in rats by a modified pharmacohistochemical method. The procedure involved in vivo irreversible inhibition of AChE by administration of the inhibitor diisopropyl fluorophosphate (DFP; 1.2 mg/kg b.w., i.m.) 1 h before 30 min forebrain ischemia (the four-vessel occlusion model). At the onset of ischemia, 70-75% of AChE was inhibited in the brain. Recirculation was followed by histochemical and biochemical investigations of newly synthesized AChE in the striatum, septum, cortex and hippocampus. Control sham-operated animals were treated with the same dose of DFP. For correlation, rats not treated with DFP were subjected to the same ischemic procedures and investigated simultaneously. In these rats, significant decrease in AChE activity was found in the striatum, septum and hippocampus during 24 h recirculation. In DFP treated rats, ischemia markedly depressed resynthesis of AChE; after 4 h recirculation, AChE activity was decreased by 45-60% in all investigated areas in comparison with controls and the AChE histochemistry showed only slightly stained neurons in the striatum and septum. Twenty-four hours after ischemia, these neurons were densely stained and the increase in AChE activity indicated a partial recovery of the enzyme synthesis. These results suggest that the depression of AChE synthesis after forebrain ischemia is probably transient, not accompanied by cholinergic neuron degeneration.  相似文献   

12.
Nonpolar and polar lipids extracted from denervated rat gastrocnemius, plantaris, and soleus muscles were measured 7–9 days after unilateral sciatic nerve transection. The contralateral muscle (CCON) was used to obtain control lipid levels. After denervation changes in lipid concentrations were found in all three muscles. These alterations in lipid levels were generally in the same direction but not to the same extent. The change in total nonpolar lipids (NL) was an increase in soleus > gastrocnemius > plantaris concentration. This change in lipid concentration was more apparent than real since the wet weight of muscle was decreased after denervation. Since polar lipid (PL) concentrations were not increased under these conditions of muscle weight loss, an actual decrease of polar lipids after denervation may be inferred.In contrast to the other two muscles, a marked difference was noted for polar lipids of denervated gastrocnemius muscle. An unidentified spot near the origin was detected. This area is the location of a nerve sprouting factor(s). The compound(s) was not detectable for the other two muscles. When the gastrocnemius from an unoperated animal rather than a CCON muscle was used as a benchmark, slight increases were found for total nonpolar, polar, and plasmalogen fractions following denervation. The changes for individual lipid fractions were less definable, except for the significant increase for the unknown polar compound near the origin. This spot was noted in extracts from CCON and DEN muscles but not in untouched control muscle. The CCON gastrocnemius muscle is therefore a poor control for determining effects of denervation on lipid levels and perhaps other biochemical parameters as well.  相似文献   

13.
《Free radical research》2013,47(10):1179-1189
Abstract

Aim of the present study was to test, by vitamin E treatment, the hypothesis that muscle adaptive responses to training are mediated by free radicals produced during the single exercise sessions. Therefore, we determined aerobic capacity of tissue homogenates and mitochondrial fractions, tissue content of mitochondrial proteins and expression of factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. Moreover, we determined the oxidative damage extent, antioxidant enzyme activities, and glutathione content in both tissue preparations, mitochondrial ROS production rate. Finally we tested mitochondrial ROS production rate and muscle susceptibility to oxidative stress. The metabolic adaptations to training, consisting in increased muscle oxidative capacity coupled with the proliferation of a mitochondrial population with decreased oxidative capacity, were generally prevented by antioxidant supplementation. Accordingly, the expression of the factors involved in mitochondrial biogenesis, which were increased by training, was restored to the control level by the antioxidant treatment. Even the training-induced increase in antioxidant enzyme activities, glutathione level and tissue capacity to oppose to an oxidative attach were prevented by vitamin E treatment. Our results support the idea that the stimulus for training-induced adaptive responses derives from the increased production, during the training sessions, of reactive oxygen species that stimulates the expression of PGC-1, which is involved in mitochondrial biogenesis and antioxidant enzymes expression. On the other hand, the observation that changes induced by training in some parameters are only attenuated by vitamin E treatment suggests that other signaling pathways, which are activated during exercise and impinge on PGC-1, can modify the response to the antioxidant integration.  相似文献   

14.
The morphology of regeneration of skeletal muscles in the rat   总被引:10,自引:0,他引:10  
Muscle regeneration was studied by light and electron microscopy in soleus muscles of rat. After segmental crushing the number of fibres increased in some muscles within 30 days, indicating that numerical hyperplasia can take place. Locally applied Ringer solution of 60-70 degrees C caused necrosis of myofibres but left satellite cells and blood supply largely intact. Following phagocytosis, four mechanisms of regeneration were seen. (1) Lost fibres were replaced by clusters of myotubes formed by satellite cells within persisting basal lamina tubes. These clusters displaced the surrounding endomysium and looked like longitudinally 'split' fibres. (2) Viable fibre fragments fused with satellite cells. (3) Satellite cells of surviving fibres proliferated and fused to myotubes localized beneath the basal lamina. (4) Thin new fibres occurred in the interstitium. Their origin remained unknown. After 6 months the mean size of the new myofibres was normal, but the scatter of diameters was increased, central nuclei, fibre 'spliting' and branching, and fibrosis were prominent. Staining for acetylcholinesterase revealed that many fibres were short and not innervated. The similarity with dystrophic muscles in man suggested, that the most prominent histological changes in myopathic muscles may be due to attempts of regeneration.  相似文献   

15.
Lipoprotein lipase was assayed in extracts of acetone-ether powders of rat skeletal muscles. Enzyme activity in soleus had typical characteristics of lipoprotein lipase in other tissues: inhibition by molar NaCl and protamine sulfate and activation by the human apolipoprotein, R-glutamic acid. Activity in muscles with predominantly red fibers (soleus, diaphragm, lateral head of gastrocnemius and anterior band of semitendinosus) was higher than in those with predominantly white fibers (body of gastrocnemius and posterior band of semitendinosus). No effect of a 24 hour fast upon enzyme activity was observed in ten skeletal muscles, but activity decreased substantially in four adipose tissue depots and increased slightly in heart muscle with fasting. Four minutes after intravenous injection of labeled lymph chylomicrons, skeletal muscles with predominantly red fibers incorporated several times more chylomicron triglyceride fatty acids than thos with predominantly white fibers. Estimated lipoprotein lipase activity in total skeletal muscle was about two-thirds that in total adipose tissue of rats fed ad libitum. After a 24 hour fast, total activity in skeletal muscle was about twice that in adipose tissue. These data suggest that a substantial fraction of lipoprotein lipase is in skeletal muscle of rats and that this tissue, especially its red fibers, is an important site of removal of triglycerides from the blood.  相似文献   

16.
alpha-Aminoisobutyric acid (AIB) transport into the intracellular compartment of extensor digitorum longus and soleus muscles was measured (in vitro) after allowance for the equilibration of the amino acid in the extracellular space. The latter was determined with three markers, [14C]inulin, 60Co-EDTA and [3H]mannitol. Net transport of AIB was subsequently divided into its two components, i.e. influx and efflux. Rates of influx were measured as the intracellular accumulation of [14C]AIB after a short incubation (5 min), and efflux was measured as the release of AIB with time (up to maximum of 50 min) from muscles that had previously been preloaded with AIB. This intracellular efflux was resolved into two phases, which probably represent two separate components of exit. The influence of extracellular Na+ on the transport of this neutral amino acid (representing the A system) was investigated. Na+ depletion resulted in lower accumulations of AIB, the effects becoming more pronounced with progressive depletions of external Na+. These changes arose from an inhibition of AIB influx, concomitant with an enhancement of its efflux. In contrast, all components of tyrosine transport (representing the L system) were unaffected by lowering external Na+ concentrations. The net accumulation of AIB was also suppressed by cortisol. This inhibitory effect was, however, Na+-dependent and resulted solely from the steroid's enhancement of AIB efflux, the hormone being without effect on AIB influx.  相似文献   

17.
18.
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70–80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca2+-calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca2+-calcineurin signaling pathway.  相似文献   

19.
This work deals with the antioxidant enzymatic response and the ultrastructural aspects of the skeletal muscle of young and aged rats kept under hypoxic or hyperoxic normobaric conditions. It is in fact well known that the supply of oxygen at concentrations higher or lower than those occurring under normal conditions can promote oxidative processes that can cause tissue damage. The enzymes investigated were both those directly involved in reactive oxygen species (ROS) scavenging (superoxide dismutase, catalase and selenium-dependent glutathione peroxidase), and those challenged with the detoxication of cytotoxic compounds produced by the action of ROS on biological molecules (glutathione transferase, glyoxalase I, glutathione reductase), in order to obtain a comparative view of the defence strategies used with respect to aging. Our results support the hypothesis that one of the major contributors to the aging process is the oxidative damage produced at least in part by an impairment of the antioxidant enzymatic system. This makes the aged organism particularly susceptible to oxidative stress injury and to the related degenerative diseases, especially in those tissues with high demand for oxidative metabolism.  相似文献   

20.
 Histochemical evidence is required to demonstrate the presence of biochemically defined cytosolic sialidase. To meet this requirement, we examined the immunohistochemical localization of the enzyme in rat skeletal muscles. Sections of chemically fixed tissues were incubated with a polyclonal antibody raised against a synthetic peptide which corresponded to a part of the enzyme protein. After incubation with the primary antibody, cryosections for fluorescence microscopy and resin sections for electron microscopy were incubated with a fluorochrome- and colloidal gold-labeled secondary antibody, respectively. Immunofluorescence was diffusely distributed in the muscle fibers and was also found in the perimysium and blood vessels. Many immunogold particles were scattered over the sarcoplasm, myofibrils, nucleoplasm, and matrix of mitochondria. The immunogold particles were also found in the equivalent compartments of axons, Schwann cells, and cells of endomysium and blood vessels. The specificity of the primary antibody was elucidated by immunoblotting and an immunoprecipitation test. These findings clearly indicate that this type of sialidase is essentially located in the cytosolic compartment. Consequently, the name, cytosolic sialidase, will be appropriate for this enzyme. Additionally it is indicated that this enzyme is also present in cells other than skeletal muscle fibers. Accepted: 29 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号