首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611-7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.  相似文献   

2.
Phosphatidic acid is a key intermediate for chloroplast membrane lipid biosynthesis. De novo phosphatidic acid biosynthesis in plants occurs in two steps: first the acylation of the sn-1 position of glycerol-3-phosphate giving rise to lysophosphatidic acid; second, the acylation of the sn-2 position of lysophosphatidic acid to form phosphatidic acid. The second step is catalyzed by a lysophosphatidic acid acyltransferase (LPAAT). Here we describe the identification of the ATS2 gene of Arabidopsis encoding the plastidic isoform of this enzyme. Introduction of the ATS2 cDNA into E. coli JC 201, which is temperature-sensitive and carries a mutation in its LPAAT gene plsC, restored this mutant to nearly wild type growth at high temperature. A green-fluorescent protein fusion with ATS2 localized to the chloroplast. Disruption of the ATS2 gene of Arabidopsis by T-DNA insertion caused embryo lethality. The development of the embryos was arrested at the globular stage concomitant with a transient increase in ATS2 gene expression. Apparently, plastidic LPAAT is essential for embryo development in Arabidopsis during the transition from the globular to the heart stage when chloroplasts begin to form.  相似文献   

3.
sn-Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA). LPA is an important intermediate for the formation of different types of acyl-lipids, such as extracellular lipid polyesters, storage and membrane lipids. Three types of GPAT have been found in plants, localizing to the plastid, endoplasmic reticulum, and mitochondria. These GPATs are involved in several lipid biosynthetic pathways and play important biological roles in plant development. In the present review, we will focus on the recent progress in studying the physiological functions of GPATs and their metabolic roles in glycerolipid biosynthesis.  相似文献   

4.
Triacylglycerol synthesis has been studied in a lipid particle preparation of baker's yeast (Saccharomyces cerevisiae), and compared with the synthesis in other subcellular fractions. Fatty acid-CoA ligase (AMP) (EC 6.2.1.3) activity and sn-glycerol 3-phosphate acyltransferase activity (EC 2.3.1.15) were present in all the subcellular fractions tested but the highest specific activities of both enzymes were observed with the lipid particle fraction. The products of the glycerol 3-phosphate acylation indicate that triacyglycerol synthesis proceeds through the phosphatidic acid pathway. However, only a small and nearly constant amount of lysophosphatidic acid was found with the lipid particle fraction while the other subcellular fraction produced lysophosphatidic and phosphatidic acid with a more pronounced precursor/product relationship. Triacylglycerol synthesis from endogenous diacylglycerol present in the lipid particle was also demonstrated.  相似文献   

5.
The acylation of 1-acyl-sn-glycero-3-phosphate to form phosphatidic acid was studied using a neuronal nuclear fraction N1 and microsomal fractions P3, R (rough), S (smooth), and P (neuronal microsomes from nerve cell bodies) isolated from cerebral cortices of 15-day-old rabbits. The assays contained this lysophospholipid, ATP, CoA, MgCl2, NaF, dithiothreitol, and radioactive palmitate, oleate, or arachidonate. Of the subfractions, N1 and R had the highest specific activities (expressed per micromole phospholipid in the fraction). The rates with oleate were two to four times the values seen for phosphatidic acid formation from sn-[3H]glycero-3-phosphate and oleoyl-CoA. Using oleate or palmitate, fraction R had superior specific rates to N1 at low lysophosphatidic acid concentrations. With increasing lysophospholipid concentrations the specific rates of N1 and R came closer together and maintained at least a twofold superiority over fraction P. Fraction S had the lowest specific rates of phosphatidic acid formation. Fractions N1, R, and P showed a preference for palmitate and oleate over arachidonate, particularly at low concentrations of lysophosphatidic acid. For N1 and R, the preference was also more marked at higher concentrations of fatty acid. Thus a selectivity for saturated and monounsaturated fatty acids was shown in the formation of phosphatidic acid, as was a concentration of acylating activity in the neuronal nucleus and the rough endoplasmic reticulum.  相似文献   

6.
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria. It is unclear whether mitochondrial phospholipids are remodeled by mitochondrial acyltransferases or whether lysophospholipids must return to the endoplasmic reticulum or to the mitochondrial associated membrane for reesterification. In this review we will focus on the few glycerolipid acyltransferases that are known to be mitochondrial. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

7.
cgi-58 (comparative gene identification-58) is a member of alpha/beta-hydrolase family of proteins. Mutations in CGI-58 are shown to be responsible for a rare genetic disorder known as Chanarin-Dorfman syndrome, characterized by an excessive accumulation of triacylglycerol in several tissues and ichthyosis. We have earlier reported that YLR099c encoding Ict1p in Saccharomyces cerevisiae can acylate lysophosphatidic acid to phosphatidic acid. Here we report that human CGI-58 is closely related to ICT1. To understand the biochemical function of cgi-58, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to specifically acylate lysophosphatidic acid in an acyl-CoA-dependent manner. Overexpression of CGI-58 in S. cerevisiae showed an increase in the formation of phosphatidic acid resulting in an overall increase in the total phospholipids. However, the triacylglycerol level was found to be significantly reduced. In addition, the physiological significance of cgi-58 in mice white adipose tissue was studied. We found soluble lysophosphatidic acid acyltransferase activity in mouse white adipose tissue. Immunoblot analysis using anti-Ict1p antibodies followed by mass spectrometry of the immunocross-reactive protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, these results reveal the role of cgi-58 as an acyltransferase.  相似文献   

8.
1. Reticulocytosis of 40-50% was obtained in rabbits by daily bleeding. Reticulocytes (plus erythrocytes) were subfractionated into plasma membrane fraction, mitochondria and the post-mitochondrial fraction. 2. In all fractions, fatty acids were incorporated into phospholipids. This process was ATP dependent and represented acylation of lysophospholipids. 3. Incorporation of fatty acids into lysophosphatidic and phosphatidic acids occurred only in the presence of sn-glycerol 3-phosphate and was observed in mitochondria and the post-mitochondrial fraction. It represents a two-step acylation of sn-glycerol 3-phosphate. 4. Incorporation of phosphorylcholine from CDPcholine into phosphatidylcholine was observed in the mitochondrial and the post-mitochondrial fractions. This activity was correlated with NADPH-cytochrome c reductase and was probably connected with the remnants of the endoplasmic reticulum.  相似文献   

9.
Sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid bind to G-protein-coupled receptors to stimulate intracellular signaling in mammalian cells. Lipid phosphate phosphatases (1, 1a, 2, and 3) are a group of enzymes that catalyze de-phosphorylation of these lipid agonists. It has been proposed that the lipid phosphate phosphatases exhibit ecto activity that may function to limit bioavailability of these lipid agonists at their receptors. In this study, we show that the stimulation of the p42/p44 mitogen-activated protein kinase pathway by sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid, all of which bind to G(i/o)-coupled receptors, is substantially reduced in human embyronic kidney 293 cells transfected with lipid phosphate phosphatases 1, 1a, and 2 but not 3. This was correlated with reduced basal intracellular phosphatidic acid and not ecto lipid phosphate phosphatase activity. These findings were supported by results showing that lipid phosphate phosphatases 1, 1a, and 2 also abrogate the stimulation of p42/p44 mitogen-activated protein kinase by thrombin, a peptide G(i/o)-coupled receptor agonist whose bioavailability at its receptor is not subject to regulation by the phosphatases. Furthermore, the lipid phosphate phosphatases have no effect on the stimulation of p42/p44 mitogen-activated protein kinase by other agents that do not use G-proteins to signal, such as serum factors and phorbol ester. Therefore, these findings show that the lipid phosphate phosphatases 1, 1a, and 2 may function to perturb G-protein-coupled receptor signaling per se rather than limiting bioavailability of lipid agonists at their respective receptors.  相似文献   

10.
Lipid A is the hydrophobic anchor of lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. Lipid A of all Rhizobiaceae is acylated with a long fatty acid chain, 27-hydroxyoctacosanoic acid. Biosynthesis of this long acyl substitution requires a special acyl carrier protein, AcpXL, which serves as a donor of C28 (omega-1)-hydroxylated fatty acid for acylation of rhizobial lipid A (Brozek, K.A., Carlson, R.W., and Raetz, C. R. (1996) J. Biol. Chem. 271, 32126-32136). To determine the biological function of the C28 acylation of lipid A, we constructed an acpXL mutant of Sinorhizobium meliloti strain 1021. Gas-liquid chromatography and mass spectrometry analysis of the fatty acid composition showed that the acpXL mutation indeed blocked C28 acylation of lipid A. SDS-PAGE analysis of acpXL mutant LPS revealed only a fast migrating band, rough LPS, whereas the parental strain 1021 manifested both rough and smooth LPS. Regardless of this, the LPS of parental and mutant strains had a similar sugar composition and exposed the same antigenic epitopes, implying that different electrophoretic profiles might account for different aggregation properties of LPS molecules with and without a long acyl chain. The acpXL mutant of strain 1021 displayed sensitivity to deoxycholate, delayed nodulation of Medicago sativa, and a reduced competitive ability. However, nodules elicited by this mutant on roots of M. sativa and Medicago truncatula had a normal morphology and fixed nitrogen. Thus, the C28 fatty acid moiety of lipid A is not crucial, but it is beneficial for establishing an effective symbiosis with host plants. acpXL lies upstream from a cluster of five genes, including msbB (lpxXL), which might be also involved in biosynthesis and transfer of the C28 fatty acid to the lipid A precursor.  相似文献   

11.
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP–ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.  相似文献   

12.
甘油-3-磷酸酰基转移酶(Glycerol-3-phosphate acyltransferase, GPAT)是三酰甘油(Triacylglycerol, TAG)生物合成的限速酶, 催化TAG生物合成的起始步骤。GPATs主要负责将脂肪酰基从酰基-酰基载体蛋白(acyl-ACP)或酰基辅酶A(acyl-CoA)上转移到甘油-3-磷酸的(Glycerol-3-phosphate, G3P) sn-1位置上。有些成员还具有sn-2酰基转移活性。目前已经在多种植物中克隆得到了GPAT基因。这些GPAT基因编码的酶主要分为三类, 它们在细胞中分别定位于质体、线粒体和内质网上。这些酶参与三酰甘油、几丁质和软木脂等多种脂质的生物合成, 在植物的生长发育中发挥着非常重要的作用。文章介绍了植物GPAT基因的染色体定位和基因结构以及GPAT酶的亚细胞定位、sn-2酰基转移特异性、GPAT酶的底物选择性及其生理功能的最新研究进展。  相似文献   

13.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

14.
The glycerolipid composition of pea (Pisum sativum L.) root plastids and their capacity to synthesize glycerolipids from [UL-14C]glycerol-3-phosphate were determined. Pea root plastids primarily consist of monogalactosyldiacylglycerol, triacylglycerol, phosphatidylcholine, digalactosyldiacylglycerol, and diacylglycerol. Maximum rates of total glycerolipid biosynthesis were obtained in the presence of 2.4 mM glycerol-3-phosphate, 15 mM KHCO3, 0.2 mM sodium-acetate, 0.5 mM each of NADH and NADPH, 0.05 mM coenzyme A, 2 mM MgCl2, 1 mM ATP, 0.1 M Bis-Tris propane (pH 7.5), and 0.31 M sorbitol. Glycerolipid biosynthesis was completely dependent on exogenously supplied ATP, coenzyme A, and a divalent cation, whereas the remaining cofactors improved their activity from 1.3- to 2.4-fold. Radioactivity from glycerol-3-phosphate was recovered predominantly in phosphatidic acid, phosphatidylglycerol, diacylglycerol, and triacylglycerol with lesser amounts in phosphatidylcholine and monoacylglycerol. The proportions of the various radiolabeled lipids that accumulated were dependent on the pH and the concentration of ATP and glycerol-3-phosphate. The data presented indicate that pea root plastids can synthesize almost all of their component glycerolipids and that glycerolipid biosynthesis is tightly coupled to de novo fatty acid biosynthesis. pH and the availability of ATP may have important roles in the regulation of lipid biosynthesis at the levels of phosphatidic acid phosphatase and in the reactions that are involved in phosphatidylglycerol and triacylglycerol biosynthesis.  相似文献   

15.
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [(14)C]oleate ( approximately 3 microm), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [(14)C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 microm oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.  相似文献   

16.
Procedures for the synthesis of fluorescent and radiolabeled analogues of phosphatidic acid are described. The fluorophore 7-nitrobenzo-2-oxa-1,3-diazole (NBD) was coupled to 6-amino-caproic acid and 12-aminododecanoic acid by reaction of NBD-chloride with the amino acids under mild alkaline conditions at room temperature. 1,2-Dioleoyl-sn-[U-14C]glycerol 3-phosphate was prepared by acylation of sn-[U-14C]glycerol 3-phosphate with oleic acid anhydride using dimethylaminopyridine as the catalyst. This compound was converted to 1-oleoyl-sn-[U-14C]glycerol 3-phosphate by hydrolysis with phospholipase A2. The lysophosphatidic acid was reacylated with NBD-aminocaproyl imidazole or NBD-aminododecanoyl imidazole to form the fluorescent, radiolabeled analogue of phosphatidic acid. Fluorescent, non-radiolabeled analogues of phosphatidic acid were prepared by phospholipase D hydrolysis of fluorescent phosphatidylcholine.  相似文献   

17.
Microsomal membrane preparations from Mortierella alpina catalysed the conversion of sn-glycerol 3-phosphate and [(14)C]oleoyl-CoA to radioactive phosphatidic acid, diacylglycerol and triacylglycerol. Experiments with lysophosphatidic acid and [(14)C]oleoyl-CoA gave a similar pattern of radioactivity in the complex lipids. The specific activity of lysophosphatidate acyltransferase was almost eight times greater than sn-glycerol-3-phosphate acyltransferase, indicating that the first acylation step was limiting in oil assembly in the microsomal membranes. Little conversion of radioactive oleate into phosphatidylcholine occurred, suggesting that triacylglycerol assembly and its relationship to phosphatidylcholine metabolism differed to that found in oilseeds.  相似文献   

18.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a plasma enzyme with extensive sequence similarity to integrin alpha subunits, is inhibited by micromolar concentrations of lipid A, phosphatidic acid (PA) and lysophosphatidic acid (M. G. Low and K.-S. Huang, J. Biol. Chem. 268, 8480-8490, 1993). In this study we have explored the mechanism of inhibition using synthetic analogs of lipid A, and PA. Monosaccharide analogs of lipid A, which varied in the number and position of the phosphate groups, the type of acyl group, and its linkage to the glucosamine ring, were tested for their ability to inhibit GPI-PLD. A compound (SDZ 880.431) containing 3-aza-glucosamine 1,4-diphosphate as the polar headgroup was identified which had a potency (IC(50) approximately 1 microM) similar to natural lipid A preparations. Removal of either phosphate residue increased the IC(50) markedly. Analogs of PA such as (7-nitro-2-1,3-benzoxadiazo-4-yl)amino-PA, ceramide 1-phosphate, and hexadecyl phosphate had approximately IC(50) values ranging from 1 to 5 microM, indicating that considerable variation in the structure of the hydrophobic groups was permissible. Inhibition of GPI-PLD by long-chain PA could not be blocked by high concentrations of glycerol 1-phosphate or dibutyryl PA. These results indicate that the hydrophobic groups do not have a passive role in inhibition but are directly involved in the binding interaction with GPI-PLD. We propose that this diverse group of inhibitors all bind to a common site on GPI-PLD, the central hydrophobic cavity predicted by the beta-propeller model for integrin alpha subunits and GPI-PLD.  相似文献   

19.
Although sterol carrier protein-2 (SCP-2; also called nonspecific lipid transfer protein) binds fatty acids and fatty acyl-CoAs, its role in fatty acid metabolism is not fully understood. L-cell fibroblasts stably expressing SCP-2 were used to resolve the relationship between SCP-2 intracellular location and fatty acid transacylation in the endoplasmic reticulum. Indirect immunofluorescence double labeling and laser scanning confocal microscopy detected SCP-2 in peroxisomes > endoplasmic reticulum > mitochondria > lysosomes. SCP-2 enhanced incorporation of exogenous [(3)H]oleic acid into phospholipids and triacylglycerols of overexpressing cells 1.6- and 2.5-fold, respectively, stimulated microsomal incorporation of [1-(14)C]oleoyl-CoA into phosphatidic acid in vitro 13-fold, and exhibited higher specificity for unsaturated versus saturated fatty acyl-CoA. SCP-2 enhanced the rate-limiting step in microsomal phosphatidic acid biosynthesis mediated by glycerol-3-phosphate acyltransferase. SCP-2 also enhanced microsomal acyl-chain remodeling of phosphatidylethanolamine up to fivefold and phosphatidylserine twofold, depending on the specific fatty acyl-CoA, but had no effect on other phospholipid classes. In summary, these results were consistent with a role for SCP-2 in phospholipid synthesis in the endoplasmic reticulum.  相似文献   

20.
Discovery of an alternative fuel is now an urgent matter because of the impending issue of oil depletion. Lipids synthesized in algal cells called triacylglycerols (TAGs) are thought to be of the most value as a potential biofuel source because they can use transesterification to manufacture biodiesel. Biodiesel is deemed as a good solution to overcoming the problem of oil depletion since it is capable of providing good performance similar to that of petroleum. Expression of several genomic sequences, including glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, and phospholipid:diacylglycerol acyltransferase, can be useful for manipulating metabolic pathways for biofuel production. In this study, we found this approach indeed increased the storage lipid content of C. minutissima UTEX 2219 up to 2-fold over that of wild type. Thus, we conclude this approach can be used with the biodiesel production platform of C. minutissima UTEX 2219 for high lipid production that will, in turn, enhance productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号