首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions.  相似文献   

2.
We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.  相似文献   

3.
Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (~60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level.  相似文献   

4.
Chromoplast development in ripening bell pepper fruits is characterized by a massive synthesis of carotenoid pigments, resulting in their distinctive red color. We have shown that 95% of these pigments accumulate in chromoplasts in specific lipoprotein fibrils. In addition to carotenoids, purified fibrils contain galactolipids, phospholipids, and a single, 32-kD protein, designated fibrillin, which has antigenically related counterparts in other species. Fibrils were reconstituted in vitro when purified fibrillin was combined with carotenoids and polar lipids in the same stoichiometric ratio found in fibrils in vivo. Antibodies directed against fibrillin were used to isolate a fibrillin cDNA clone and, in immunological studies, to follow its accumulation during the chloroplast-to-chromoplast transition under different conditions. A model for fibril architecture is proposed wherein carotenoids accumulate in the center of the fibrils and are surrounded by a layer of polar lipids, which in turn are surrounded by an outer layer of fibrillin. Topological analysis of purified fibrils verified this structure. Collectively, these results suggest that the process of fibril self-assembly in chromoplasts is an example of a general phenomenon shared among cells that target excess membrane lipids into deposit structures to avoid their destabilizing or toxic effects. In addition, we have shown that abscisic acid stimulates this phenomenon in chromoplasts, whereas gibberellic acid and auxin delay it.  相似文献   

5.
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts’ redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.  相似文献   

6.
Purification and characterisation of pepper ( Capsicum annuum L) chloroplasts and chromoplasts isolated from commercial green, red and yellow mature fruits were undertaken. Induction of the synthesis of several antioxidants in organelles isolated from mature fruits was found. The ultrastructure of organelles and the presence and activity of SOD isozymes and enzymes involved in the ASC-GSH cycle, together with the non-enzymatic antioxidant content and some oxidative parameters, were analysed. It was found that lipids, rather than proteins, seem to be a target for oxidation in the chromoplasts. The ascorbate and glutathione contents were elicited during differentiation of chloroplasts into chromoplasts in both red and yellow fruits. The activity of SOD and of components of the ASC-GSH cycle was up-regulated, suggesting that these enzymes may play a role in the protection of plastids and could act as modulators of signal molecules such as O2˙− and H2O2 during fruit maturation. The presence of an Mn-SOD in chromoplasts isolated from yellow pepper fruits was also investigated in terms of structural and antioxidant differences between the two cultivars.  相似文献   

7.
8.
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.  相似文献   

9.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

10.
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post‐translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome‐wide mapping of in vivo phosphorylation sites in chromoplast‐enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide‐based affinity chromatography for phosphoprotein enrichment with LC‐MS/MS. A total of 109 plastid‐localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif‐X analysis, two distinct types of phosphorylation sites, one as proline‐directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P3DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high‐level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.  相似文献   

11.
Changes of carotenoids and anthocyanins content, lipid peroxidation, and activity of antioxidant enzymes were studied in wild type and tocopherol-deficient lines vte1 and vte4 of Arabidopsis thaliana subjected to 200 mM NaCI during 24 h. The salt stress enhanced the intensity of lipid peroxidation to different extent in all three plant lines. Salt stress resulted in an increase of carotenoid content and activity of catalase, ascorbate peroxidase, guaiacol peroxidase and glutathione reductase in wild type and tocopherol-deficient vte1 mutant. However, the increase in anthocyanins concentration was observed in vte1 mutants only. In vte4 mutant, which contain gamma-tocopherol instead of alpha-tocopherol, the response to salt stress occurred via coordinative action of superoxide dismutase and enzymes of ascorbate-glutathione cycle, in particular, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and glutathione-S-transferase. It can be concluded, that salt stress was accompanied by oxidative stress in three studied lines, however different mechanisms involved in adaptation of wild type and tocopherol-deficient lines to salt stress.  相似文献   

12.
During the transformation of chloroplasts to chromoplasts in Capsicum annuum L., the permeability of the envelope membranes to possible precursors of carotenoid biosynthesis (acetate, mevalonate, citrate) was tested. The plastids were isolated by gel filtration, and the uptake of labeled compounds was measured by a filtering centrifugation technique, using silicone oil. The different ripening stages were characterized by the ratio of chlorophyll to carotenoid content. The chloroplast membranes were shown to be impermeable to all of the metabolites tested. During the transformation there was a sharp increase of membrane permeability. In the mature chromoplast, the permeability to mevalonate and acetate again decreased to about 20% of the maximum value and reached zero for citrate. The results give evidence that during the transformation of chloroplasts to chromoplasts, precursors for carotenoid biosynthesis are translocated from extraplastidic sites into the plastids, there being possibly incorporated into carotenoids.  相似文献   

13.
Enzymes that are able to oxidatively cleave carotenoids at specific positions have been identified in animals and plants. The first such enzyme to be identified was a nine-cis-epoxy carotenoid dioxygenase from maize, which catalyzes the rate-limiting step of abscisic acid biosynthesis. Similar enzymes are necessary for the synthesis of vitamin A in animals and other carotenoid-derived molecules in plants. In the model plant, Arabidopsis, there are nine hypothetical proteins that share some degree of sequence similarity to the nine-cis-epoxy carotenoid dioxygenases. Five of these proteins appear to be involved in abscisic acid biosynthesis. The remaining four proteins are expected to catalyze other carotenoid cleavage reactions and have been named carotenoid cleavage dioxygenases (CCDs). The hypothetical proteins, AtCCD7 and AtCCD8, are the most disparate members of this protein family in Arabidopsis. The max3 and max4 mutants in Arabidopsis result from lesions in AtCCD7 and AtCCD8. Both mutants display a dramatic increase in lateral branching and are believed to be impaired in the synthesis of an unidentified compound that inhibits axillary meristem development. To determine the biochemical function of AtCCD7, the protein was expressed in carotenoid-accumulating strains of Escherichia coli. The activity of AtCCD7 was also tested in vitro with several of the most common plant carotenoids. It was shown that the recombinant AtCCD7 protein catalyzes a specific 9-10 cleavage of beta-carotene to produce the 10 black triangle down-apo-beta-carotenal (C27) and beta-ionone (C13). When AtCCD7 and AtCCD8 were co-expressed in a beta-carotene-producing strain of E. coli, the 13-apo-beta-carotenone (C18) was produced. The C18 product appears to result from a secondary cleavage of the AtCCD7-derived C27 product. The sequential cleavages of beta-carotene by AtCCD7 and AtCCD8 are likely the initial steps in the synthesis of a carotenoid-derived signaling molecule that is necessary for the regulation lateral branching.  相似文献   

14.
Arabidopsis thaliana proteome contains 667 proteases; some tens of them are chloroplast-targeted proteins, encoded by genes orthologous to the ones coding for bacterial proteolytic enzymes. It is thought that chloroplast proteases are involved in chloroplasts' proteins turnover and quality control (maturation of nucleus-encoded proteins and removal of nonfunctional ones). Some ATP-dependent chloroplast proteases belonging to FtsH family (especially FtsH2 and FtsH5) are considered to be involved in numerous aspects of chloroplast and whole plant maintenance under non-stressing as well as stressing conditions. This notion is supported by severe phenotype appearance of mutants deficient in these proteases. In contrast to seemingly high physiological importance of chloroplast members of FtsH protease family, only a few individual proteins have been identified so far as their physiological targets (i.e. Lhcb1, Lhcb3, PsbA and Rieske protein). Our knowledge regarding structure and molecular mechanisms of these enzymes' action is limited when compared with what is known about FtsHs of bacterial origin. Equally limited is the knowledge about ATP-dependent Lon4 protease being the single known chloroplast-targeted ortholog of Lon protease of Escherichia coli.  相似文献   

15.
16.
Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in "Rpl. cryptolactis". Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1'-dihydroxylycopene and 3,4,3',4'-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of "Rpl. cryptolactis", and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.  相似文献   

17.
Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.Plastids are developmentally related organelles capable of interconversion among a variety of structurally and biochemically distinct forms in response to both environmental and tissue-specific cues (Whatley, 1978; Thomson and Whatley, 1980). Formation of chromoplasts in many fruits is one striking example of this plasticity. Heavily pigmented, photosynthetically inactive chromoplasts frequently develop from chloroplasts during ripening. This conversion involves dramatic changes in the organization and composition of the internal plastid compartment, which include the loss of proteins involved in carbon fixation in the stroma and replacement with chromoplast-specific proteins, the breakdown of the photosynthetic thylakoid membranes and loss of proteins involved in light capture and electron transfer, and, in some cases, the formation of new membranes (Spurr and Harris, 1968; Camara and Brangeon, 1981; Piechulla et al., 1987; Kuntz et al., 1989).Chromoplast formation is an active rather than simply a degradative process. New proteins, specific to or enhanced in chromoplasts, are synthesized and compartmentalized in the plastid (Camara et al., 1995; Price et al., 1995). Most chromoplast proteins are predicted to be nuclear encoded, translated on cytoplasmic ribosomes, and posttranslationally imported into the plastid, as are nuclear-encoded chloroplast proteins. Import of chloroplast proteins occurs via a general import machinery that appears to mediate translocation of most or all proteins that are delivered to the chloroplast stroma, either as a final destination or as an intermediate location (Cline and Henry, 1996; Robinson and Mant, 1997; Schnell, 1998). Proteins are targeted to the general import pathway by an N-terminal extension that is cleaved upon import, resulting in the appearance of a processed protein of reduced Mr. Presumably, the import of proteins into chromoplasts is accomplished by the same machinery that is responsible for import of proteins into chloroplasts, although this has never been directly examined.In some chromoplasts an extensive set of internal membranes accumulates, replacing the thylakoids. For example, in the fibrillar-type chromoplast of bell pepper (Capsicum annuum), the photosynthetic membranes are replaced by membranous sheets and vesicles in addition to the carotenoid-rich plastoglobules and fibrils (Spurr and Harris, 1968; Laborde and Spurr, 1973; Camara and Brangeon, 1981; Deruere et al., 1994). The often extensive internal membranes are the site of synthesis of keto-xanthophylls, which constitute the major carotenoids of red fruit (Bouvier et al., 1994).Our interests are in the biogenesis of the internal membranes of plastids, in particular the proteins that are integral to the bilayer, as well as those located in the luminal compartment formed by the bilayer. In chloroplasts, proteins destined for the thylakoid membrane or lumen are routed from the stroma into the thylakoid membrane and lumen by one of at least four distinct mechanisms: the ΔpH, chloroplast SRP, thylakoid Sec pathways, and an apparently spontaneous insertion mechanism (for review, see Cline and Henry, 1996; Robinson and Mant, 1997; Schnell, 1998). In view of the extensive internal membrane system of bell pepper chromoplasts, one would expect the presence of proteins and accompanying translocation machinery in these membranes. However, no chromoplast-specific proteins have been conclusively demonstrated to be either integral or luminal to these membranes.One protein, Pftf (plastid fusion/translocation factor), predicted to be membrane anchored by sequence analysis, has been purified from the stromal compartment of pepper chromoplasts (Hugueney et al., 1995). This raised the possibility that mature chromoplasts lack the ability to localize proteins into/across internal membranes. To address this question we developed a method for isolating protein import-competent chromoplasts from bell peppers. Immunoblotting confirmed that these chromoplasts contain known translocation machinery components. Chromoplasts were assayed in vitro for their ability to import and localize passenger proteins from the three known protein-machinery-dependent thylakoid-targeting pathways. We found mature chromoplasts to be capable of membrane targeting of proteins that utilize the thylakoidal Sec and ΔpH pathways but not capable of inserting a membrane protein, LHCP, which utilizes the chloroplast SRP pathway. Pftf was inserted into the membranes of these chromoplasts in a manner similar to that observed in chloroplasts, and resident Pftf was also found to be integrally associated with chromoplast membranes. The precise role of these pathways in the formation of bell pepper chromoplasts remains to be fully elucidated.  相似文献   

18.
Color changes often accompany the onset of ripening, leading to brightly colored fruits that serve as attractants to seed-dispersing organisms. In many fruits, including tomato (Solanum lycopersicum) and pepper (Capsicum annuum), there is a sharp decrease in chlorophyll content and a concomitant increase in the synthesis of carotenoids as a result of the conversion of chloroplasts into chromoplasts. The green-flesh (gf) and chlorophyll retainer (cl) mutations of tomato and pepper, respectively, are inhibited in their ability to degrade chlorophyll during ripening, leading to the production of ripe fruits characterized by both chlorophyll and carotenoid accumulation and are thus brown in color. Using a positional cloning approach, we have identified a point mutation at the gf locus that causes an amino acid substitution in an invariant residue of a tomato homolog of the STAY-GREEN (SGR) protein of rice (Oryza sativa). Similarly, the cl mutation also carries an amino acid substitution at an invariant residue in a pepper homolog of SGR. Both GF and CL expression are highly induced at the onset of fruit ripening, coincident with the ripening-associated decline in chlorophyll. Phylogenetic analysis indicates that there are two distinct groups of SGR proteins in plants. The SGR subfamily is required for chlorophyll degradation and operates through an unknown mechanism. A second subfamily, which we have termed SGR-like, has an as-yet undefined function.  相似文献   

19.
20.
Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号