首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of contractile agonists on the relaxation elicited with isoproterenol (ISO) was studied in 112 tracheal smooth muscle (TSM) strips from 20 dogs in vitro. Strips were contracted to the same active target tension (TT) with acetylcholine (ACh), histamine (HIS), serotonin (5-hydroxytryptamine, 5-HT), potassium chloride (KCl), or the combinations of ACh + HIS, ACh + 5-HT, HIS + KCl, HIS + 5-HT (50% TT from each agonist). Although a less potent agonist, adding HIS to cause 50% of the TT reduced the concentration of ACh to elicit the remaining 50% TT and substantially altered relaxation by ISO compared with HIS alone [concentration required to achieve 50% relaxation (RC50) = 9.2 +/- 2.4 X 10(-8) vs. 9.0 +/- 4.4 X 10(-9) M to HIS alone; P less than 0.003]. Relaxation for TSM strips contracted with ACh + HIS was comparable to that elicited from the same TT with ACh alone, although concentrations required in combination were lower than for either agonist alone. Trachealis strips contracted equivalently with KCl + HIS also had augmented contraction and attenuated relaxation (RC50 = 3.7 +/- 0.8 X 10(-8) M; P less than 0.015 vs. HIS alone). However, combinations of 5-HT + ACh and 5-HT + HIS did not alter relaxation to ISO from that elicited by the weaker agonist alone. We demonstrate that TSM relaxation depends on the combination of agonists eliciting contraction and may be inhibited substantially by interactions among contractile agonists.  相似文献   

2.
The regulation of sperm transport through the Wolffian duct of male amphibians is poorly understood. These experiments were conducted using rough-skinned newts (Taricha granulosa) to determine if Wolffian ducts are capable of contracting in vitro and, if so, to characterize the contractile responses to acetylcholine (ACh), norepinephrine (NE), and neurohypophysial hormones. Dose-response curves for NE and ACh, which were prepared by measuring isometric contractions, are similar to those reported for mammalian vas deferens. For NE, the minimum effective dose and ED50 were found to be 1 X 10(-5)M and 4.17 X 10(-5)M, respectively. For ACh, the minimum effective dose was 3.2 X 10(-8)M and the ED50 was 1.37 X 10(-5)M. Alpha-adrenoreceptors appear to mediate the contractile responses to NE because phentolamine (10(-5)M) blocked or attenuated the response to NE (10(-6)M, 10(-5)M or 10(-4) M). Beta-adrenoreceptors appear to mediate relaxation because dichloroisoproterenol (10(-5)M) enhanced the response to 10(-5)M NE. The contractile response to three neurohypophysial hormones were also investigated. Arginine vasotocin was more effective in eliciting contractions than oxytocin. The effect of lysine vasopressin was intermediate between arginine vasotocin and oxytocin. These experiments demonstrate that amphibian (Taricha) Wolffian ducts contract in vitro in response to neurotransmitters and neurohypophysial hormones. The contractile response to neurotransmitters occurs in a dose-dependent manner; the response to neurohypophysial hormones is hormone specific.  相似文献   

3.
We investigated the responsiveness of basilar arterial rings isolated from snakes to noradrenaline (NA), acetylcholine (ACh), histamine (His), 5-hydroxytryptamine (5-HT), mammalian bradykinin (BK) and rattlesnake BK. We also examined whether endothelial cells were involved in the responsiveness to ACh, BK, rattlesnake BK and in their resting vascular tone. NA and 5-HT induced concentration-dependent contractions. The cumulative concentration response curves of NA and 5-HT were shifted to the right in parallel by phentolamine (an alpha antagonist) and methiothepin (a 5-HT(1) and 5-HT(2) antagonist), respectively. However, ketanserin (a 5-HT(2) antagonist) had no effect on the cumulative concentration response curve of 5-HT. His, ACh, BK and rattlesnake BK had no effect on resting vascular tone; however, rattlesnake BK and sodium nitroprusside relaxed arteries precontracted by 5-HT. The rattlesnake BK-induced relaxations were almost abolished by L-nitro arginine (L-NA, a nitric oxide synthase inhibitor). L-NA and indomethacin (a cyclooxygenase inhibitor) had no effect on resting vascular tone or on precontracted arteries. These results suggest that alpha and 5-HT(1) receptor subtypes might be important in arterial contraction. Endothelial cells might play an important role in the responsiveness of snake basilar arteries to rattlesnake BK, but they might not be involved in the responsiveness to ACh, BK and in resting vascular tone.  相似文献   

4.
The characteristics of the acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) receptors of Deroceras buccal muscle were examined using specific pharmacological probes and sucrose gap electrophysiological analysis. ACh induced concentration-dependent smooth tonic contractures coupled with considerable depolarisation from the normal resting membrane potential of -30.6 mV. The use of choline ester analogues such as carbachol, propionylcholine and butyrylcholine, specific cholinergic agonists such as nicotine, muscarine, bethanecol and pilocarpine and antagonists such as d-tubocurarine, succinylcholine, hexamethomium, atropine, gallamine, pirenzepine and scopolamine indicated that the ACh receptor showed both nicotinic and muscarinic characteristics; the muscarinic activity resembled that of a mammalian M(2)-like receptor. Alternatively, it can not be ruled out that both mammalian types of receptor may be present in this preparation since both nicotine and muscarine induced noticeable tension. 5-HT application induced characteristic dose-dependent phasic contractions accompanied by small but quite consistent depolarisations. Serotonergic agonist and antagonist experiments using 1-(3-chlorophenyl) piperazine, 1-(m-chlorophenyl) biguanide, methiothepin, methysergide and metoclopramide strongly suggested that the 5-HT receptor showed closest pharmacological affinity with the 5-HT(1) receptor class of mammals but with some 5-HT(2) activity. In view of the phylogenetic gap between molluscs and mammals it is not surprising that the ACh and 5-HT receptors of Deroceras can not be properly classified by conventional mammalian terminology.  相似文献   

5.
The effects of electrical stimulation, γ-aminobutyric acid (GABA), acetylcholine (ACh), norepinephrine (NE), 5-hydroxytryptamine (5-HT), GABA agonists and bicuculline were studied on spontaneous movements of isolated rat oviduct. The tissue did not respond to electrical stimulation or to GABA, NE and 5-HT when added to the incubation medium. ACh produced contractions related to its concentration which were maximal at the diestrous-1 phase when GABA caused a 20% rise in the ACh contraction. This effect was mimicked by GABA agonists whereas it was suppressed by bicuculline. β-Estradiol benzoate (EB) increased ACh contractions in diestrous-1 and in the late proestrous phases. GABA did not modify the EB effect. Progesterone did not modify ACh contractions in any of the studied phases. These findings suggest a possible modulatory role for GABA on ACh responses in the isolated rat oviduct.  相似文献   

6.
The sources of calcium for cholecystokinin octapeptide (CCK-OP)-induced gallbladder smooth muscle contraction are considered both extracellular and intracellular, but the relative need for intracellular calcium especially at low, physiological concentrations is not clear. To better define the calcium sources responsible for guinea-pig gallbladder contractions in vitro, we inhibited calcium influx using the calcium channel blocker, methoxyverapamil, and a calcium-free Krebs' solution. Availability and release of intracellular calcium stores were depleted by strontium substitution and ryanodine. CCK-OP was compared to bethanechol and potassium chloride (KCl). Preventing calcium influx with 10(-5) M methoxyverapamil depressed the responses to CCK-OP, bethanechol and KCl. Methoxyverapamil, however, had little effect on the time-dependent generation of tension to CCK-OP, but significantly reduced the response to bethanechol and KCl, each at ED50. The duration of the contractile response in the calcium-free Krebs' solution to CCK-OP was longer than that for bethanechol. Strontium (2.5 mM) significantly attenuated the response to CCK-OP and bethanechol, but not to KCl. Ryanodine significantly reduced contractions induced by CCK-OP but not for bethanechol, both at low dose ED25. These results indicate that contraction of the guinea-pig gallbladder induced by CCK-OP, bethanechol and KCl requires extracellular calcium influx. Further, the initiation and maintenance of contraction by CCK-OP and bethanechol necessitates calcium mobilisation from intracellular stores. CCK-OP may have a greater penchant for these calcium stores, particularly at physiological doses.  相似文献   

7.
It is known that K(ATP) channel openers inhibit the release and refilling of Ca(2+) from intracellular stores. The present study was designed to test the effects of levcromakalim in human umbilical artery (HUA) rings stimulated by serotonin (5-HT) and KCl in Ca-free medium. Umbilical cords were obtained at vaginal or cesarean deliveries from healthy, term pregnancies. After the isolation, HUA rings were placed in organ baths in solution with indomethacin (10(-5) M) and N(G)-nitro-L-arginine methyl ester (L-NAME) (10(-3) M) at 37 degrees C and aerated with 95% O(2) and 5% CO(2) for the measurement of isometric force. In Ca-free solution with Ethylene glycol-bis (ss-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (2 mM) the contractions produced by 5-HT (10(-6) M) and KCl (40 mM) decreased significantly. Afterwards, HUA rings were treated with 5-HT and KCl in repeated manner in Ca-free medium. In contrast to KCl, 5-HT induced contractions reduced in each application, progressively. Levcromakalim (10(-4) M) abolished the contractions elicited by 5-HT. On the other hand, levcromakalim had a little but significant inhibitory effect on KCl induced contraction in Ca-free medium. These results suggest that Ca(2+) is not the only transduction pathway in KCl produced contractions of HUA smooth muscle cells.  相似文献   

8.
A role for the small G protein rho and rho-kinase has been shown in smooth muscle contraction regarding Ca++ sensitivity. However, there are no data in the literature assessing how this system operates in human umbilical arteries (HUA). Therefore, we evaluated the effects of HA-1077 and Y-27632, two rho-kinase inhibitors, on agonist-(5-hydroxytryptamine [5-HT]) and depolarization-induced (KCl) contractions of HUA. HA-1077 and Y-27632 inhibited 5-HT-induced contractile responses at 10−4 M concentration but not at 10−5 M. HA-1077 at 10−4 M also significantly attenuated contractions induced by 20 mM KCl. In addition, HUA precontracted with 5-HT relaxed concentration dependently in response to HA-1077 and Y-27632. When precontracted with KCl, HUA also relaxed dose-dependently in response to HA-1077, but the maximal relaxation was significantly smaller than the response obtained when precontracted with 5-HT. To determine possible involvement of rho-kinase on agonist-induced intracellular calcium-mediated contractions, tissues were precontracted with 5-HT in Ca++-free Krebs solution before cumulative addition of HA-1077 or Y-27632 (10−7 to 10−4 M). Both rho-kinase inhibitors relaxed HUA completely. Maximum relaxations of HUA to HA-1077 and Y-27632 were significantly larger than the responses seen in normal Krebs solution and were obtained with lower concentrations of the drugs considered to be more specific for rho-kinase inhibition. However, preincubation of HUA with HA-1077 or Y-27632 (10−5 M for both) did not affect the 5-HT-induced contractions in this medium. Finally, immunoblot experiments revealed the expression of rho-kinase isoform rockII protein in HUA. These results indicate that rhoA/rho-kinase pathway can contribute to agonist-induced contractions of HUA. However, this effect appears to be limited to intracellular calcium-induced contractions and may be more important in sustaining contractions rather than the initial phase of force development.  相似文献   

9.
Hippocampal cholinergic neuronal activity is reported to be regulated, at least partly, through serotonin1A (5-HT1A) receptors. Chronic lithium treatment has been shown to alter both behavioral and neurochemical responses mediated by postsynaptic 5-HT1A receptors. We investigated whether long-term lithium treatment affects central cholinergic neurotransmission through 5-HT1A receptor-mediated pathways. Changes in acetylcholine (ACh) release induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, in the rat hippocampus were measured using a microdialysis technique and a radioimmunoassay for ACh. Administration of lithium for 21 days resulted in a serum lithium concentration of 1.03 mM and caused little change in density or affinity of [3H]8-OH-DPAT binding sites in the hippocampus. The local application of 8-OH-DPAT into the hippocampus of lithium treated rats increased the ACh efflux in both the absence and the presence of physostigmine, a cholinesterase (ChE) inhibitor, in the perfusion fluid. The basal ACh efflux of lithium treated rats was not different from that of the control rats under normal conditions, but was significantly higher than that of the controls when ChE was inhibited. These results demonstrate that chronic lithium treatment increases spontaneous ACh release in the hippocampus under conditions of ChE inhibition, but not under normal conditions, and enhances cholinergic neurotransmission through 5-HT1A receptor-mediated pathways, and suggest that activation of 5-HT1A receptor function by lithium is related to the enhancement of hippocampal cholinergic neurotransmission.  相似文献   

10.
The contributions of superoxide dismutase (SOD) and Na(+), K(+)-ATPase to the altered vascular reactivity in potassium-adapted rats were investigated to test the hypothesis that smooth muscle hyperpolarisation may be involved. Isometric contractions to noradrenaline (NA), 5-hydroxytryptamine (5-HT), and relaxations to acetylcholine (ACh), levcromakalim (LEV) and sodium nitroprusside (SNP), were measured in aortic rings from potassium-adapted rats. Pieces of the aortae were also excised from the animals and assayed for SOD and Na(+), K(+)-ATPase. Maximum contractile responses were significantly attenuated (P<0.05) in aortic rings from the potassium-adapted rats to NA and 5-HT, while relaxations were also significantly augmented (P<0.05) in the same rings to LEV and SNP, but not to ACh. Both SOD and Na(+), K(+)-ATPase activities were significantly higher (P<0.05) in the aortae from the potassium-adapted rats compared to controls. It is concluded that the alteration in vascular smooth muscle reactivity may be due to hyperpolarisation caused by the activities of SOD and Na(+), K(+)-ATPase.  相似文献   

11.
Acetylcholine (ACh) causes contraction of Aplysia buccal muscles E1 and I5, and serotonin (5-hydroxytryptamine, 5-HT) enhances ACh-elicited contractions of these muscles. Possible roles of calcium influx in mediating these responses were examined by studying influx of 45Ca++. 5-HT increased calcium influx into both I5 and E1. Maximal influx occurred at 10(-6) M 5-HT and the increased influx could be sustained in the presence of 5-HT for at least 10 min. ACh also caused calcium influx, and calcium influx increased approximately in proportion to log[ACh] from 10(-5) M to 10(-3) M ACh. 5-HT and ACh probably bring about calcium influx by different mechanisms since the effect of ACh was additive to a maximal 5-HT response, and 10(-4) M hexamethonium bromide inhibited the increased influx caused by ACh but did not affect influx caused by 5-HT. Cyclic AMP analogues and forskolin neither caused an increase in calcium influx nor an increase in the influx caused by ACh. The data support a model in which ACh-elicited contractions of I5 and E1 are due primarily to calcium entry across the extracellular membrane, and 5-HT can "load" an intracellular site by a mechanism different from that activated by ACh. The data do not support a role for cyclic AMP in mediating the calcium influx response to 5-HT.  相似文献   

12.
Pretreatment with acebutolol or propranolol at high concentrations had an inhibitory effect on the contractile response to 5-hydroxytryptamine (5-HT) in most vascular smooth muscles such as rabbit aorta and basilar, mesenteric, renal, femoral arteries and cat coronary artery. The inhibitory actions of both agents were generally greater than on the responses to excess Ca2+ and potassium. In rabbit renal arteries, acebutolol had no effect on the response to 5-HT but inhibited the responses to excess Ca2+ and potassium. Propranolol had a marked inhibitory effect on the response to 5-HT. In all preparations used, the contractions induced by norepinephrine (NE) and histamine showed a much greater resistance to the effect of acebutolol and propranolol than the contractions induced by 5-HT, Ca2+ and potassium. Nifedipine had no inhibitory effect on the response to 5-HT in most of the preparations. Nifedipine inhibited the response to 5-HT only in the basilar arteries. The inhibitory actions of propranolol on the response to 5-HT was greater than that of acebutolol. The inhibitory action of acebutolol and propranolol on the response to 5-HT may be related to mechanisms other than the beta-adrenoceptor blocking action of the drugs. The possible mechanisms of inhibitory action of both beta-adrenoceptor antagonists on 5-HT are discussed.  相似文献   

13.
The phenomenon of contractile agonist-dependent relaxation by isoproterenol (ISO) of active tension elicited by acetylcholine (ACh), histamine (HIS), serotonin (5-HT), and potassium chloride-substituted Krebs-Henseleit solution (KCl) was studied in 210 tracheal smooth muscle (TSM) strips from 28 mongrel dogs in vitro. All TSM strips were contracted to similar active tensions [target tension (TT) = 50% of the maximal active tension elicited by 127 mM KCl] with ACh, HIS, 5-HT, or KCl and relaxed with either ISO, forskolin (FSK), N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP), or 3-isobutyl-1-methylxanthine (IMX). The concentrations of ISO causing 50% relaxation from TT (RC50) were ACh (2.9 +/- 1.1 x 10(-6) M) greater than 5-HT (8.4 +/- 1.5 x 10(-8) M) approximately KCl (8.1 +/- 2.1 x 10(-8) M) greater than HIS (1.6 +/- 0.2 x 10(-8) M). FSK and IMX relaxed TSM in the same rank order of potency as ISO. In contrast to the contractile agonist-dependent relaxation elicited by ISO, FSK, and IMX, db-cAMP was nearly equipotent in relaxing similarly contracted strips. These results are consistent with contractile agonist-specific interaction with cAMP production by ISO and FSK. These data demonstrate that the phenomenon of contractile agonist-dependent relaxation by ISO is not related specifically to the beta-adrenoceptor.  相似文献   

14.
K Tasaka  C Kamei  H Akahori  K Kitazumi 《Life sciences》1985,37(21):2005-2014
When histamine (Hi) and other agonists were applied intraventricularly, Hi caused a dose-dependent inhibition of the avoidance response in rats; its ED50 was 3.60 micrograms. 1-methylHi, 1-methylimidazole acetic acid and imidazole acetic acid which are major metabolites of Hi produced no inhibitory effect even at 50 micrograms. H1-agonists (2-methylHi and 2-thiazolylethylamine) also depressed the avoidance response; their dose-response lines run parallel to that of Hi. The depressant effects of H2-agonists (4-methylHi and dimaprit) were relatively weak; their dose-response lines were not parallel to that of Hi. When antagonists were pretreated intravenously, Hi action was clearly antagonized by diphehydramine and pyrilamine, but not by cimetidine or ranitidine. Intraventricular injection of Hi mixed with cimetidine or ranitidine did not change the effect induced by Hi alone. The avoidance response was not affected by noradrenaline, dopamine or 5-hydroxytryptamine. Although acetylcholine (ACh) suppressed the avoidance response dose-dependently, its effect was much weaker than that of Hi. Pretreatment with cholinergic blocking drugs (atropine and scopolamine) antagonized ACh action but not Hi action. From these results, it is assumed that the inhibitory effect of Hi on the avoidance response is preferentially linked to the H1-receptor. After intraventricular application of 3H-Hi, the highest radioactivity was determined in the hypothalamus.  相似文献   

15.
In this study, the herbal extracts of Schisandra chinensis were demonstrated to inhibit the contractions induced by acetylcholine (ACh) and serotonin (5-HT) in guinea pig ileum, and the 95% ethanol extract was more effective than the aqueous extract. Analysis with High Performance Liquid Chromatography (HPLC) indicated that schisandrin, schisandrol B, schisandrin A and schisandrin B were the major lignans of Schisandra chinensis, and the ethanol extract contained higher amount of these lignans than the aqueous extract. All four lignans inhibited the contractile responses to ACh, with EC20 values ranging from 2.2 ± 0.4 μM (schisandrin A) to 13.2 ± 4.7 μM (schisandrin). The effectiveness of these compounds in relaxing the 5-HT-induced contraction was observed with a similar magnitude. Receptor binding assay indicated that Schisandra lignans did not show significant antagonistic effect on muscarinic M3 receptor. In Ca2+-free preparations primed with ACh or KCl, schisandrin A (50 μM) attenuated the contractile responses to cumulative addition of CaCl2 by 37%. In addition, schisandrin A also concentration-dependently inhibited ACh-induced contractions in Ca2+-free buffer. This study demonstrates that Schisandra chinensis exhibited relaxant effects on agonist-induced contraction in guinea pig ileum, with schisandrin, schisandrol B, schisandrin A and schisandrin B being the major active ingredients. The antispasmodic action of schisandrin A involved inhibitions on both Ca2+ influx through L-type Ca2+ channels and intracellular Ca2+ mobilization, rather than specific antagonism of cholinergic muscarinic receptors.  相似文献   

16.
Increased resistance of the small blood vessels within the lungs is associated with pulmonary hypertension and results from a decrease in size induced by the contraction of their smooth muscle cells (SMCs). To study the mechanisms that regulate the contraction of intrapulmonary arteriole SMCs, the contractile and Ca(2+) responses of the arteriole SMCs to 5-hydroxytrypamine (5-HT) and KCl were observed with phase-contrast and scanning confocal microscopy in thin lung slices cut from mouse lungs stiffened with agarose and gelatin. 5-HT induced a concentration-dependent contraction of the arterioles. Increasing concentrations of extracellular KCl induced transient contractions in the SMCs and a reduction in the arteriole luminal size. 5-HT induced oscillations in [Ca(2+)](i) within the SMCs, and the frequency of these Ca(2+) oscillations was dependent on the agonist concentration and correlated with the extent of sustained arteriole contraction. By contrast, KCl induced Ca(2+) oscillations that occurred with low frequencies and were preceded by small, localized transient Ca(2+) events. The 5-HT-induced Ca(2+) oscillations and contractions occurred in the absence of extracellular Ca(2+) and were resistant to Ni(2+) and nifedipine but were abolished by caffeine. KCl-induced Ca(2+) oscillations and contractions were abolished by the absence of extracellular Ca(2+) and the presence of Ni(2+), nifedipine, and caffeine. Arteriole contraction was induced or abolished by a 5-HT(2)-specific agonist or antagonist, respectively. These results indicate that 5-HT, acting via 5-HT(2) receptors, induces arteriole contraction by initiating Ca(2+) oscillations and that KCl induces contraction via Ca(2+) transients resulting from the overfilling of internal Ca(2+) stores. We hypothesize that the magnitude of the sustained intrapulmonary SMC contraction is determined by the frequency of Ca(2+) oscillations and also by the relaxation rate of the SMC.  相似文献   

17.
The purpose of the study was to determine whether catecholamines modulate cholinergic neurotransmission in isolated human airway smooth muscle. Bronchial rings were suspended in organ baths for isometric measurement of tension, and contractions were induced by either electrical field stimulation (EFS) or exogenous acetylcholine (ACh). Isoproterenol, epinephrine, and norepinephrine in that order of potency produced concentration-dependent inhibition of comparable responses to EFS and ACh. However a potency difference of 100-fold for isoproterenol (IC50 = 4.80 X 10(-8) M for EFS and 3.70 X 10(-6) M for ACh) and 10-fold for both epinephrine and norepinephrine was observed for inhibition of responses to EFS compared with responses to ACh. The inhibitory effects of isoproterenol on responses to EFS were prevented by propranolol and ICI 118551 (a beta 2-antagonist) but not by betaxolol (a beta 1-antagonist). Tyramine had no effect on contractions elicited by EFS. These experiments demonstrate that beta-agonists inhibit cholinergic nerve-induced contractions of human bronchi more potently than contractions induced by exogenous ACh, suggesting modulation of cholinergic neurotransmission by prejunctional beta 2-receptors.  相似文献   

18.
Hypertensive men have a higher prevalence of erectile dysfunction (ED) than the general population. Experimental evidence of ED in hypertensive animals is scarce. This study evaluates the erectile function of spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) in vivo by the increase in intracavernosal pressure after electrical stimulation of the cavernous nerve (CN) and by isometric tension studies on corporal strips. Frequency-dependent erectile responses to CN stimulations were reduced in SHR. Phenylephrine induced lower corporal contractions in SHR although pD2 values were similar to WKY. Endothelium-dependent relaxations to ACh were impaired significantly in SHR, and indomethacin improved these relaxations in both WKY and SHR, the latter thus reaching values similar to WKY. Corporal relaxations to sodium nitroprusside were enhanced in SHR. Thus a dysfunctional alpha-adrenergic contraction of the corporal smooth muscle, an increased cyclooxygenase-dependent constrictor tone, and/or a defect in endothelium-dependent reactivity are associated with the altered erectile mechanisms in SHR. Drugs targeting endothelial dysfunction may delay the occurrence of ED as a complication of hypertension.  相似文献   

19.
Hexamethonium bromide (Hex. Br.) blocks acetylcholine (ACh) elicited contractions but not electrically elicited contractions of isolated preparations of Aplysia californica dorsal extrinsic muscle. Serotonin (5-hydroxytryptamine, 5-HT) enhances both magnitude and relaxation rate of ACh and electrically elicited contractions. In the presence of Hex. Br., 5-HT still exhibits its modulatory effects on electrically elicited contractions. Forskolin enhances both magnitude and relaxation rate of ACh and electrically elicited contractions. Forskolin (10(-5) M) increases the cyclic AMP content of the accessory radula closer and dorsal extrinsic muscles.  相似文献   

20.
The role of 5-HT3 receptors in the biphasic vasodilator response to serotonin (5-hydroxytryptamine; 5-HT) was investigated in the forearm of 7 young healthy volunteers (aged 22-32 years). Single dose infusions of 5-HT (1 ng/kg/min) and of acetylcholine (ACh, 500 ng/kg/min) were administered into the brachial artery. Subsequently combined infusions of 5-HT together with the selective 5-HT3 receptor antagonist ICS 205-930 (350 and 700 ng/kg/min), and ACh together with ICS 205-930 (700 ng/kg/min) were given. After a pause of at least 1 hour the single infusions of 5-HT and ACh were repeated. Subsequently, 5-HT and ACh were infused together with atropine (100 ng/kg/min). Forearm blood flow (FBF) was measured by R-wave triggered venous occlusion plethysmography. Heart rate (HR) and i.a. blood pressure (BP) were recorded semi-continuously. None of the drugs in the doses used did induce systemic hemodynamic effects. After an initial rapid transient increase in FBF of 316 +/- 55%, 5-HT elicited a persistent increase in FBF of 90 +/- 22% (mean +/- SEM, p less than 0.05 for both). ACh induced a monophasic vasodilatation of 475 +/- 123% (p less than 0.05). Both the initial transient and the persistent dilatator response to 5-HT were attenuated by ICS 205-930 350 ng/kg/min (p = 0.057, n = 5) and 700 ng/kg/min (p less than 0.05, n = 7). The highest dose of ICS 205-930 did not significantly influence the dilatator response to ACh. Atropine abolished the ACh induced vasodilatation (p less than 0.05), but did not influence the biphasic dilatator response to 5-HT. Thus the 5-HT induced biphasic vasodilatation was antagonized by ICS 205-930, indicating that this response was mediated by 5-HT3 receptor activation. The fact that atropine did not influence the vascular response to 5-HT suggests that 5-HT did not induce vascular relaxation indirectly by the release of ACh from cholinergic nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号