首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

8.
《Epigenetics》2013,8(11):1540-1556
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

9.
10.
We present the first in vitro study investigating the catalytic properties of a mammalian de novo DNA methyltransferase. Dnmt3a from mouse was cloned and expressed in Escherichia coli. It was shown to be catalytically active in E. coli cells in vivo. The methylation activity of the purified protein was highest at pH 7.0 and 30 mM KCl. Our data show that recombinant Dnmt3a protein is indeed a de novo methyltransferase, as it catalyzes the transfer of methyl groups to unmethylated substrates with similar efficiency as to hemimethylated substrates. With oligonucleotide substrates, the catalytic activity of Dnmt3a is similar to that of Dnmt1: the K(m) values for the unmethylated and hemimethylated oligonucleotide substrates are 2.5 microM, and the k(cat) values are 0.05 h(-1) and 0.07 h(-1), respectively. The enzyme catalyzes the methylation of DNA in a distributive manner, suggesting that Dnmt3a and Dnmt1 may cooperate during de novo methylation of DNA. Further, we investigated the methylation activity of Dnmt3a at non-canonical sites. Even though the enzyme shows maximum activity at CpG sites, with oligonucleotide substrates, a high methylation activity was also found at CpA sites, which are modified only twofold slower than CpG sites. Therefore, the specificity of Dnmt3a is completely different from that of the maintenance methyltransferase Dnmt1, which shows a 40 to 50-fold preference for hemimethylated over unmethylated CpG sites and has almost no methylation activity at non-CpG sites.  相似文献   

11.
12.
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. Here we showed that de novo DNA methylation occurred at the CpG island of ntl. The methylation started at the segmentation stage and continued after the larval stage. However, it occurred predominantly between 14 and 48 h postfertilization, which overlaps the period in which ntl expression disappears in the notochord and the tailbud. This inverse correlation, together with the methylation-associated formation of an inaccessible chromatin structure at the ntl CpG island region, suggested the involvement of the de novo methylation in ntl repression. Since no changes in methylation patterns were observed at the CpG islands of four other zebrafish genes, there must be a mechanism in zebrafish for specific methylation of the ntl CpG island.  相似文献   

13.
The DNA methyltransferase enzyme (DNA MTase) catalyzes DNA methylation at cytosines in CpG dinucleotides. 5-Methylcytosine modification of DNA is important in gene regulation, DNA replication, chromatin organization and disease. Increased levels of DNA MTase have been associated with the initiation and promotion of cancer. This study was conducted to assess whether cigarette smoking and other factors, such as age and gender, influence DNA MTase expression in nontumorous tissue. DNA MTase was significantly (p<0.05) higher in samples from cigarette smokers; the mean level of DNA MTase mRNA was almost 2-fold higher in these samples than in those from nonsmokers. Levels of DNA MTase mRNA were higher in samples from females than in those from males, but the difference was not statistically significant. Age was not associated with DNA MTase levels. Increased levels of DNA MTase in individuals who smoke may indicate a greater susceptibility to the risk of cancer since increased levels of this enzyme are found in cancer cell lines and human tumors. The results of this study suggest that further investigations of increased expression of this enzyme as a predisposing factor for cancer susceptibility are needed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Although DNA can be extensively methylated de novo when introduced into pluripotent cells, the CpG island in the Thy-1 gene does not become methylated either in the mouse embryo or in embryonic stem cells. A 214-base-pair region near the promoter of the Thy-1 gene protects itself as well as heterologous DNA sequences from de novo methylation. We propose that this nucleotide sequence is representative of a class of important signals that limits de novo methylation in the embryo and establishes the pattern of hypomethylated CpG dinucleotides found in somatic tissues.  相似文献   

15.
CDX1 is a homeobox protein that inhibits proliferation of intestinal epithelial cells and regulates intestine-specific genes involved in differentiation. CDX1 expression is developmentally and spatially regulated, and its expression is aberrantly down-regulated in colorectal cancers and colon cancer-derived cell lines. However, very little is known about the molecular mechanism underlying the regulation of CDX1 gene expression. In this study, we characterized the CDX1 gene structure and identified that its gene promoter contained a typical CpG island with a CpG observed/expected ratio of 0.80, suggesting that the CDX1 gene is a target of aberrant methylation. Alterations of DNA methylation in the CDX1 gene promoter were investigated in a series of colorectal cancer cell lines. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis revealed that the CDX1 promoter is methylated in CDX1 non-expressing colorectal cancer cell lines but not in human normal colon tissue and T84 cells, which express CDX1. Treatment with 5'-aza-2'-deoxycytidine (5-azaC), a DNA methyltransferase inhibitor, induced CDX1 expression in the colorectal cancer cell lines. Furthermore, de novo methylation was determined by establishing stably transfected clones of the CDX1 promoter in SW480 cells and demethylation by 5-azaC-activated reporter gene expression. These results indicate that aberrant methylation of the CpG island in the CDX1 promoter is one of the mechanisms that mediate CDX1 down-regulation in colorectal cancer cell lines.  相似文献   

16.
The process of X-inactivation in mammals requires at least two events, the initiation of inactivation and the maintenance of the inactive state. One possible mechanism of control is by methylation of DNA at CpG dinucleotides to maintain the inactive state. Furthermore, the paternal X-chromosome is frequently inactivated in the extraembryonic membranes. The relationship between the parental origin of the chromosome, nonrandom inactivation and DNA methylation is not clear. In this paper, we report on the CpG methylation of an X-linked transgene, CAT-32. The levels of methylation in embryonic, extraembryonic and germline cells indicates that the modifications of the transgene are broadly similar to those reported for endogenous X-linked genes. Interestingly, the methylation of CAT-32 transgene in extraembryonic tissues displays patterns that could be linked to the germline origin of each allele. Hence, the maternally derived copy of CAT-32 was relatively undermethylated when compared to the paternal one. The changes in DNA methylation were attributed to de novo methylation occurring after fertilization, most probably during differentiation of extraembryonic tissues. In order to determine whether or not the patterns of DNA methylation reflected the germline origin of the X-chromosome, we constructed triploid embryos specifically to introduce two maternal X-chromosomes in the same embryo. In some of these triploid conceptuses, methylation patterns characteristic of the paternally derived transgene were observed. This observation indicates that the methylation patterns are not necessarily dependent on the parental origin of the X-chromosome, but could be changed by somatic events after fertilization. One of the more likely mechanisms is methylation of the transgene following inactivation of the X-chromosome in extraembryonic tissues.  相似文献   

17.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

18.
Latent episomal genomes of Epstein-Barr virus, a human gammaherpesvirus, represent a suitable model system for studying replication and methylation of chromosomal DNA in mammals. We analyzed the methylation patterns of CpG dinucleotides in the latent origin of DNA replication of Epstein-Barr virus using automated fluorescent genomic sequencing of bisulfite-modified DNA samples. We observed that the minimal origin of DNA replication was unmethylated in 8 well-characterized human cell lines or clones carrying latent Epstein-Barr virus genomes as well as in a prototype virus producer marmoset cell line. This observation suggests that unmethylated DNA domains can function as initiation sites or zones of DNA replication in human cells. Furthermore, 5' from this unmethylated region we observed focal points of de novo DNA methylation in nonrandom positions in the majority of Burkitt's lymphoma cell lines and clones studied while the corresponding CpG dinucleotides in viral genomes carried by lymphoblastoid cell lines and marmoset cells were completely unmethylated. Clustering of highly methylated CpG dinucleotides suggests that de novo methylation of unmethylated double-stranded episomal viral genomes starts at discrete founder sites in vivo. This is the first comparative high-resolution methylation analysis of a latent viral origin of DNA replication in human cells.  相似文献   

19.
20.
Alterations in DNA methylation patterns are one of the earliest and most common events in tumorigenesis. Overall levels of genomic methylation often decrease during transformation, but localized regions of increased methylation have been observed in the same tumors. We have examined changes in the methylation status of the muscle determination gene myoD, which contains a CpG island, as a function of oncogenic transformation. This CpG island underwent de novo methylation during immortalization of 10T1/2 cells, and progressively more sites became methylated during the subsequent transformation of the cells to oncogenicity. The greatest increase in methylation occurred in the middle of the CpG island in exon 1 during transformation. Interestingly, no methylation was apparent in the putative promoter of myoD in either the 10T1/2 cell line or its transformed derivative. The large number of sites in the CpG island that became methylated during transformation was correlated with heterochromatinization of myoD as evidenced by a decreased sensitivity to cleavage of DNA in nuclei by MspI. A site in the putative promoter also became insensitive to MspI digestion in nuclei, suggesting that the chromatin structural changes extended beyond the areas of de novo methylation. Unlike Lyonized genes on the inactive X chromosome, whose timing of replication is shifted to late S phase, myoD replicated early in S phase in the transformed cell line. Methylation analysis of myoD in DNAs from several human tumors, which presumably do not express the gene, showed that hypermethylation also frequently occurs during carcinogenesis in vivo. Thus, the progressive increase in methylation of myoD during immortalization and transformation coinciding with a change in chromatin structure, as illustrated by the in vitro tumorigenic model, may represent a common mechanism in carcinogenesis for permanently silencing the expression of genes which can influence cell growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号