首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two experiments were designed to assess the effectiveness of cryopreserving bovine MII oocytes using cryotops as the carrier system for vitrification. In the first experiment, we examined the developmental competence of oocytes after: (i) vitrification in open-pulled straws (OPS method); or (ii) vitrification in <0.1 μl medium droplet on the surface of a specially constructed fine polypropylene strip attached to a plastic handle (Cryotop method). In the second experiment, warmed oocytes that had been vitrified in OPS or cryotops were fixed to analyze spindle and chromosome configuration. In all experiments both cow and calf oocytes were used. Significantly different fertilization rates were observed between the vitrification groups: 31.5% and 20.2% for the cow and calf oocytes vitrified in OPS, respectively, versus 46.1% and 46.4% for the oocytes vitrified using cryotops. After in vitro fertilization, 3.8% of the calf oocytes and 5.3% of the cow oocytes developed to the blastocyst stage. All blastocysts from vitrified oocytes resulted from the Cryotop method. A significantly lower percentage of the OPS-vitrified calf oocytes showed a normal spindle configuration (37.8%) compared to control fresh oocytes (69.9%), while normal spindle and chromosome configurations were observed in a significantly higher proportion of the cryotop-vitrified calf oocytes (60.2%). For the cow oocytes, 60.6% in the OPS group and 60.3% in the Cryotop group exhibited a normal morphology after warming. These findings suggest the cryotop system is a more efficient carrier for vitrification than OPS for the cryopreservation of bovine oocytes.  相似文献   

2.
The present study investigated the effects of the sexual maturity of oocyte donors on in vitro maturation (IVM) and the parthenogenetic developmental capacity of fresh minke whale oocytes. The effects of cytochalasin B (CB) pretreatment and two types of cryoprotectant solutions (ethylene glycol (EG) or ethylene glycol and dimethylsulfoxide (EG + DMSO)) on the in vitro maturation of vitrified immature whale oocytes were compared, and the developmental capacity of vitrified immature whale oocytes following IVM and intracytoplasmic sperm injection examined (ICSI). The maturation rate did not differ significantly with sexual maturity (adult, 60.9%; prepubertal, 53.1%), but the parthenogenetic activation rate of oocytes from adult donors (76.7%) was significantly higher (p < 0.05) than that of oocytes from prepubertal donors (46.4%). The maturation rates after vitrification and warming were not significantly different between the EG (22.2%) and EG + DMSO groups (30.2%), or between the CB-treated (30.4%) and non-CB-treated groups (27.3%). These results indicate that parthenogenetic activation of in vitro matured oocytes from adult minke whales was superior to that from prepubertal whales, but that the developmental capacity of the whale oocytes after parthenogenetic activation or ICSI was still low. The present study also showed that CB treatment before vitrification and two kinds of cryoprotectants did not improve the IVM rate following the vitrification of immature whale oocytes.  相似文献   

3.
The aim of the study was to evaluate meiotic maturation, and expression of genes coding for oocyte secreted factors (GDF9, BMP15, TGFBR1, and BPR2) and apoptosis (BCL2, BAX and P53) after vitrification of immature goat cumulus oocyte complexes (COCs) and in vitro maturation. COCs were vitrified in a solution containing ethylene glycol, dimethyl sulfoxide and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). Freshly collected COCs (Control), COCs exposed to vitrification and dilution solutions without cryopreservation (EC) and vitrified-warmed COCs were matured in vitro for 27h. The viability of vitrified-warmed COCs 2 h post warming and in vitro maturation was similar for CL, HS and CT. The proportion of oocytes that extruded a 1st polar body and reached TI/MII was significantly higher with CT and HS followed by CL, OPS and CS. Gene expression of GDF9, BMP15, BMPR2, BAX and P53 were comparable to control levels for OPS, CL, HS and CT. The gene expression pattern in CS vitrified COCs was by contrast changed in that GDF9, BMP15, TGFBR1 and BAX were up regulated and BMPR2, BCL2 and P53 down regulated. In conclusion immature goat COCs vitrified using CT and HS showed that viability, maturation rates and expression of genes coding for oocyte secreted factors and apoptosis were similar to non-vitrified controls.  相似文献   

4.
The aim of the study was to identify a cryo-device that would be best suited for the vitrification of buffalo immature cumulus-oocyte complexes (COCs) as judged by viability and meiotic competence of the vitrified-warmed oocytes and their development ability following in vitro fertilization (IVF). The expression of oocyte secreting factors and their receptors (GDF9, BMP15, BMPR2, TGFBR1) and apoptosis related genes (BCL2, BAX, P53, C-MYC) were compared in vitrified-warmed oocytes after in vitro maturation. COCs from the ovaries of slaughtered buffaloes were vitrified in a combination of dimethyl sulfoxide, ethylene glycol, and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). The fresh COCs were exposed to vitrification and warming solutions as in other vitrification methods without plunging in to liquid nitrogen (EC). The viability of vitrified-warmed COCs, 2 h post warming in HS and CT was similar to fresh and EC groups but significantly higher than CS and OPS methods. The proportions of oocytes with first polar body after 24 h in vitro maturation were significantly higher in HS and CT methods than in CS, OPS and CL methods. The development ability of these vitrified-warmed oocytes to blastocyst stage following IVF in all vitrified groups was significantly lower than control and EC groups. Among the vitrified groups, the blastocyst rate in HS, CT and CL groups was significantly higher than in OPS and CS groups. It was also observed that the expression levels of GDF9, BMP15, BMPR2, TGFBR1, BCL2, BAX, P53 and C-MYC genes in vitrified-warmed COCs in CT, HS and CL groups were similar to control. The results indicated that HS, CT and CL are more suitable cryo-devices for vitrification of buffalo immature oocytes.  相似文献   

5.
The aims of the present study were to improve in vitro maturation, fertilization and subsequent development of minke whale oocytes. We investigated the effects of different concentrations (0, 10 and 20%) of fetal whale serum (FWS) in maturation medium on nuclear maturation, morphological grade (A or B) of cumulus-oocyte complexes (COC) obtained from prepubertal and adult minke whales. Grade A (> or = 5 layers of cumulus cells) COC collected from the adult whales and cultured in the medium with 20% FWS had a higher (P < 0.05) maturation rate (31.8%) than those in the medium without FWS (0%). Adding FWS to the maturation medium significantly (P < 0.01) improved the proportion of oocytes at Metaphase II (M-II): without FWS (7.9%), with 10% (19.4%) and 20% (21.4%) FWS. However, sexual maturity of whales and COC grades were not significantly affected by M-II oocytes. When in vitro fertilization of matured oocytes was performed in the presence of 20% FWS or 0.6% BSA in the fertilization medium, the proportions of sperm penetration and two-pronuclei formation in matured oocytes were not significantly different. Grade A COC cultured in a culture medium supplemented with 10% FWS cleaved at a higher rate (15.4%, P < 0.05) than did Grade A and B COCs cultured in the medium without FWS (0%). Neither Grade A nor B COCs cleaved when the medium was without FWS. The proportions of cleaved oocytes increased (P < 0.05) with FWS supplementation (6.9% and 8.1% for 1.0% FWS and 20% FWS, respectively). Grade A COC was significantly (P < 0.05) superior in its ability to cleave (14.5%) and develop to morula (4.2%) compared with that of the oocytes from Grade B COC (2.5% and 0%). Coculture with granulosa cells during in vitro culture did not significantly affect cleavage and development to the morula stage. These results indicate that FWS addition in the maturation medium improved the rate of in vitro maturation and cleavage after insemination of minke whale oocytes. The BSA supplementation in fertilization medium was as effective as FWS supplementation for in vitro fertilization of matured oocytes. In vitro embryo production beyond the morula stage of minke whale oocytes could be possible, if Grade A COC was selected and cultured in the maturation medium supplemented with 10% or 20% FWS.  相似文献   

6.
Our objective was to document potential subcellular consequences of treatment with the microtubule stabilizer Taxol with or without subsequent vitrification of cow and calf oocytes by the open pulled straw (OPS) method. Oocytes were divided into four experimental groups for cows and four groups for calves: (1) a control group fixed immediately after maturation; (2) an OPS group cryopreserved by conventional OPS; (3) a Taxol/CPA group exposed to 1 microM Taxol and cryoprotective agents (CPAs); and (4) a Taxol/OPS group vitrified by OPS including 1 microM Taxol to the vitrification solution. All oocytes were processed for light and transmission electron microscopy. The main injuries were observed on the metaphase plate and the spindle. In control oocytes, the metaphase appeared as condensed chromosomes arranged in a well-organized metaphase plate and the spindle showed well organized microtubules in both cow and calf oocytes. However, in cow OPS oocytes, the metaphase plate was disorganized into scattered chromosomes or the chromosomes were condensed into a single block of chromatin. In addition, microtubules were not organized as typical spindles. In contrast, cow Taxol/OPS oocytes as well as both cow and calf Taxol/CPAs oocytes showed well-organized metaphase plates and normal spindle morphology. All calf OPS and calf Taxol/OPS oocytes displayed a single block of chromatin and no microtubules could be observed around the chromosomes. In conclusion, treatment with 1 microM Taxol before and during vitrification did not induce adverse changes in the oocyte cytoplasm or metaphase spindles in adult bovine oocytes, but stabilized the metaphase and spindle morphology.  相似文献   

7.
This study was designed to evaluate the effects of the cryopreservation of oocytes obtained from prepubertal calves or adult cows on chromosome organization, spindle morphology, cytoskeleton structures, and the ability of fertilized oocytes to develop to the blastocyst stage. Once in vitro matured (IVM), the oocytes were divided into three groups according to whether they were: (1) left untreated (control); (2) exposed to cryoprotectant agents (CPAs); or (3) cryopreserved by the open-pulled-straw (OPS) vitrification method. After thawing, oocyte samples were fixed, stained using specific fluorescent probes and examined under a confocal microscope. The remaining oocytes were fertilized, and cleavage and blastocyst rates recorded. After vitrification or CPA exposure, significantly higher proportions of oocytes showed changes in spindle morphology compared to the control group. The spindle structure of the adult cow IVM oocytes was significantly more resistant to the OPS vitrification process. Vitrification of oocytes from calves or adult cows led to significantly increased proportions of oocytes showing discontinuous or null actin staining of the cytoskeleton compared to non-treated controls. Oocytes only exposed to the cryoprotectants showed a similar appearance to controls. A normal distribution of actin microfilaments was observed in both calf and adult cow oocytes, irrespective of the treatment. Cleavage and blastocyst rates were significantly lower for vitrified versus non-treated oocytes. Oocytes obtained from adult cows were more sensitive to CPA exposure, while the vitrification procedure seemed to have more detrimental effects on the calf oocytes.  相似文献   

8.
Vitrification of buffalo (Bubalus bubalis) oocytes   总被引:6,自引:0,他引:6  
Dhali A  Manik RS  Das SK  Singla SK  Palta P 《Theriogenology》2000,53(6):1295-1303
The objective of the present study was to develop a method for the cryopreservation of buffalo oocytes by vitrification. Cumulus-oocyte complexes (COCs) were obtained from slaughterhouse ovaries. Prior to vitrification of COCs in the vitrification solution (VS) consisting of 4.5 M ethylene glycol, 3.4 M dimethyl sulfoxide, 5.56 mM glucose, 0.33 mM sodium pyruvate and 0.4% w/v bovine serum albumin in Dulbecco's phosphate buffered saline (DPBS), the COCs were exposed to the equilibration solution (50% VS v/v in DPBS) for 1 or 3 min at room temperature (25 to 30 degrees C). The COCs were then placed in 15-microL of VS and immediately loaded into 0.25-mL French straws, each containing 150 microL of 0.5 M sucrose in DPBS. The straws were placed in liquid nitrogen (LN2) vapor for 2 min, plunged and stored in LN2 for at least 7 d. The straws were thawed in warm water at 28 degrees C for 20 sec. For dilution, the COCs were equilibrated in 0.5 M sucrose in DPBS for 5 min and then washed 4 to 5 times in the washing medium (TCM-199+10% estrus buffalo serum). The proportion of oocytes recovered in a morphologically normal form was significantly higher (98 and 88%, respectively; P<0.05), and the proportion of oocytes recovered in a damaged form was significantly lower (2 and 12%, respectively; P<0.05) for the 3-min equilibration than for 1 min. For examining the in vitro developmental potential of vitrified-warmed oocytes, the oocytes were placed in 50-microL droplets (10 to 15 oocytes per droplet) of maturation medium (TCM-199+15% FBS+5 microg/mL FSH-P), covered with paraffin oil in a 35-mm Petri dish and cultured for 26 h in a CO2 incubator (5% CO2 in air) at 38.5 degrees C. Although the nuclear maturation rate did not differ between the 1- and 3-min equilibration periods (21.5+/-10.7 and 31.5+/-1.5%, respectively), the between-trial variation was very high for the 1-min period. This method of vitrification is simple and rapid, and can be useful for cryopreservation of buffalo oocytes.  相似文献   

9.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.  相似文献   

10.
The objective was to investigate the effects of cryodevice, vitrification solutions, and equilibration time on in vitro maturation, cleavage, and embryo development of vitrified bovine oocytes. In Experiment 1, the nuclear maturation (MII) rate of immature bovine COCs vitrified was compared between two equilibration times (0 vs 10 min) in vitrification solution 1 (VS1) and two cryodevices (cryotop vs 0.25 mL straw). The MII rate was higher in the non-vitrified control group than in vitrified groups (61 vs 16%, P < 0.0001). Equilibration time did not affect MII rate (P = 0.964); however, the MII rate was higher for COCs vitrified on cryotops than in straws (23 vs 9%, P = 0.007). In Experiment 2, bovine COCs were vitrified on cryotops using two equilibration times (0 vs 5 min) in VS1 and two kinds of vitrification solutions (freshly prepared vs frozen). Cleavage and blastocyst rates were higher (P < 0.0001) in the non-vitrified control group than vitrified groups (cleavage rate 93 vs 42% and blastocysts rate 31 vs 0.4%). Cleavage rate of COCs vitrified using frozen solutions with 5 min equilibration was higher (P = 0.05) than other treatment groups. However, blastocyst rate did not differ (P = 0.993) among treatment groups. In conclusion, cryotop was a better cryodevice than 0.25 mL straw for vitrification of bovine COCs. Furthermore, 5 min equilibration in VS1 improved cleavage. Compared with control, the vitrification procedure per se damaged bovine COCs, resulting in poor nuclear maturation and embryo development. However, vitrification did not immediately kill oocytes, as the cleavage rate was acceptable.  相似文献   

11.
Our aim was to evaluate if loading prepubertal ovine oocyte with trehalose would impact on their further developmental potential in vitro and if it would improve their survival to vitrification procedures. COCs matured in vitro with (TRH) or without (CTR) 100mM trehalose were tested for developmental potential after in vitro fertilization and culture. Trehalose uptake was measured by the antrone spectrophotometric assay. No differences were recorded between the two experimental groups in fertilization rates (91.1 CTR vs 92.5% TRH), cleavage rates calculated on fertilized oocytes (96.1 CTR vs 95.4% TRH), first cleavage kinetic (56.1 CTR vs 51% TRH), and blastocyst rates (14.3 CTR vs 13.0% TRH). Anthrone assay revealed that in TRH group trehalose concentration/oocyte was 2.6microM. MII oocytes were then vitrified using cryoloops in TCM 199 containing 20% FCS, sucrose 0.5M, 16.5% Me(2)SO, 16.5% EG and plunged in LN(2). After warming, oocytes from TRH and CTR groups were tested for membrane integrity using the propidium iodide (PI)/Hoechst differential staining, and for developmental ability after in vitro fertilization. Trehalose in maturation medium affected membrane resistance (P<0.01) to vitrification/warming but not fertilization and cleavage rates. The differential staining showed a lower number of PI positive cells in TRH group compared to CTR one (14.3 vs 24.7%, respectively). Fertilization rates and cleavage rates did not differ between the two groups (55.3 and 41% for TRH and 47.7 and 41.7% for CTR, respectively). In conclusion trehalose in maturation medium stabilizes cell membranes during vitrification/warming of prepubertal ovine oocytes but does not affect fertilization and cleavage rates after warming.  相似文献   

12.
目的探讨自制冷冻载体冷冻保存昆明小鼠体内原核期胚胎的可行性。方法首先,比较了两种流行的商业化载体:开放式拉长麦管(open pulled straw,OPS)和冷冻帽(cryotop)开展小鼠原核胚玻璃化冷冻保存效果。其次,以cryotop为对照,利用自制简易载体(cryotip)开展小鼠原核期胚胎的玻璃化冷冻保存。之后,利用ANOVA对各组胚胎在复苏后的体外培养卵裂率、囊胚率进行统计分析。结果 OPS和cryotop两组之间,胚胎在玻璃化冷冻/复苏后发育的2-细胞率、4-细胞率和囊胚率差异均无显著性(P0.05),但cryotop冷冻效果更接近对照组;cryotip玻璃化冷冻载体与cryotop相比,胚胎复苏后各组差异均无显著性(P0.05),数值上除了2-细胞发育率外,cryotip其他几项结果都稍微高于cryotop组。结论 OPS,cryotop,cryotip冷冻保存昆明小鼠体内原核期胚胎均是可行的;cryotop在冷冻效果上要优于OPS,笔者自制的cryotip因其成本低,制作简单,操作安全可靠,在实验中替代昂贵的商业化载体OPS和cryotop是可行的。  相似文献   

13.
《Cryobiology》2015,70(3):496-499
The present study was undertaken to compare the efficacies of Cryotop (CT), solid surface vitrification (SSV) methods and cytochalasin B (CB) treatment for the cryopreservation of immature bovine oocytes, in terms of survival, nuclear maturation, and in vitro development. Solution exposed oocytes were in vitro maturated and fertilized. No difference was found in the rates of survival, nuclear maturation and blastocyst among solution exposed groups and fresh control group, except blastocysts rates in oocytes exposed to CB, cryoprotectant (CPA) and fluorescein diacetate (FDA) group (CB–CPA–FDA) (23%) significantly lower than that of control group (32%). CB pretreated ((+)CB) or non-pretreated ((−)CB) COCs were vitrified either by SSV or CT. Among four vitrified groups the nuclear maturation rates (CT(−)CB: 58%, CT(+)CB: 57%, SSV(−)CB: 60%, SSV(+)CB: 63%), cleavage (CT(−)CB: 36%, CT(+)CB: 24%, SSV(−)CB: 34%, SSV(+)CB: 26%) and blastocysts rates (CT(−)CB: 6%, CT(+)CB: 7%, SSV(−)CB: 4%, SSV(+)CB: 6%) did not differ, but the rates of the four vitrified groups were significantly lower than those of non-vitrified group (81%, 71% and 26%, respectively). We thus conclude that CT and SSV perform equally in vitrification of bovine immature oocytes, and CB did not increase the viability, nuclear maturation, or in vitro development of vitrified oocytes.  相似文献   

14.
The aim of this work was to evaluate whether providing a support of cumulus cells during IVF of buffalo denuded oocytes submitted to vitrification-warming enhances their fertilizing ability. In vitro matured denuded oocytes were vitrified by Cryotop in 20% EG + 20% of DMSO and 0.5 M sucrose and warmed into decreasing concentrations of sucrose (1.25 M-0.3M). Oocytes that survived vitrification were fertilized: 1) in the absence of a somatic support (DOs); 2) in the presence of bovine cumulus cells in suspension (DOs+susp); 3) on a bovine cumulus monolayer (DOs+monol); and 4) with intact bovine COCs in a 1:1 ratio (DOs+COCs). In vitro matured oocytes were fertilized and cultured to the blastocyst stage as a control.An increased cleavage rate was obtained from DOs+COCs (60.9%) compared to DOs, DOs+susp (43.6 and 38.4, respectively; P < 0.01) and DOs+monol (47.5%; P < 0.05). Interestingly, cleavage rate of DOs+COCs was similar to that of fresh control oocytes (67.8%). However, development to blastocysts significantly decreased in all vitrification groups compared to the control (P < 0.01).In conclusion the co-culture with intact COCs during IVF completely restores fertilizing capability of buffalo denuded vitrified oocytes, without improving blastocyst development.  相似文献   

15.
The cryopreservation of oocytes is an open problem as a result of their structural sensitivity to the freezing process. This study examined (i) the survival and meiotic competence of ovine oocytes vitrified at the GV stage with or without cumulus cells; (ii) the viability and functional status of cumulus cells after cryopreservation; (iii) the effect of cytochalasin B treatment before vitrification; (iv) chromatin and spindle organization; (v) the maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activity of vitrified oocytes after in vitro maturation. Sheep oocytes were vitrified at different times during in vitro maturation (0, 2, and 6 h) with (COCs) or without cumulus cells (DOs). After warming and in vitro maturation, oocytes denuded at 0 h culture showed a significantly higher survival and meiotic maturation rate compared to the other groups. Hoechst 33342/propidium iodide double staining of COCs and microinjection of Lucifer Yellow revealed extensive cumulus cell membrane damage and reduced oocyte-cumulus cell communications after vitrification. Cytochalasin B treatment of COCs before vitrification exerted a negative effect on oocyte survival. After in vitro maturation, the number of vitrified oocytes with abnormal spindle and chromatin configuration was significantly higher compared to control oocytes, independently of the presence or absence of cumulus cells. The removal of cumulus cells combined with vitrification significantly decreased the MPF and MAPK levels. This study provides evidence that the removal of cumulus cells before vitrification enhances oocyte survival and meiotic competence, while impairing the activity of important proteins that could affect the developmental competence of oocytes.  相似文献   

16.
The aim of this study was to evaluate the effect of cytochalasin B (CCB) pre-treatment before vitrification on ability of immature oocytes from lamb ovaries to progress until metaphase II (MII) stage after vitrification/warming procedure. Cumulus-oocyte complexes (COCs) were obtained from ovaries of lambs, from 80 to 90 days old, collected from a local slaughterhouse. Before vitrification, COCs were randomly distributed in two experimental groups corresponding to the incubation with or without 7.5 microg/ml CCB for 30 min. In order to study cryoprotectant and CCB pre-treatment toxicity (toxicity test), oocytes were exposed to cryoprotectants, with or without CCB pre-treatment, but without plunging into N2 liquid. Vitrification solution was composed by 4.48 M EG plus 3.50 M DMSO supplemented with 0.25 M sucrose. Two-step addition was performed. After vitrification or toxicity test, COCs were matured in bicarbonate-buffered TCM 199 containing 10% foetal calf serum and 10 ng/ml epidermal growth factor. A sample of COCs was directly in vitro matured (control group). Rates of MII oocytes of toxicity groups both, with or without CCB pre-treatment were lower than control group (41.1-50.0 versus 79.9, respectively; P<0.05). After vitrification, a lower number of oocytes progressed to MII stage in comparison with non-vitrification groups (P<0.05). In vitrified groups both with or without CCB pre-treatment 8.0 and 12.7%, respectively, of immature oocytes reached MII stage by the end of in vitro maturation culture. No effect of CCB was observed, either in the toxicity or vitrified groups. In conclusion, no effect of CCB pre-treatment before vitrification was detected in this study with immature oocytes of pre-pubertal sheep. More studies are needed in order to increase ovine oocyte survival after vitrification.  相似文献   

17.
The nuclear stage at which oocytes are cryopreserved influences further development ability and cryopreservation affects ultrastructure of both cumulus cells and the oocyte. In this work, we analyze the effects of vitrification at different nuclear and cytoplasmic maturation stages on the oocyte ultrastructure and developmental ability. Culture in TCM199 + PVA with roscovitine 25 M during 24h led to meiotic arrest (MA) in cumulus-oocyte complexes (COCs), while permissive in vitro maturation (IVM) was performed in TCM199, 10% FCS, FSH-LH and 17beta-estradiol for 24 h. Oocytes were vitrified using the open pulled straw method (OPS) with minor modifications. Fresh and vitrified/warmed COCs were fixed as immature, after IVM, after meiotic arrest (MA) and after MA + IVM. Vitrification combined with MA followed by IVM produced the highest rates of degeneration, regardless of the vitrification time. As a consequence, lower proportions of embryos cleaved in these groups, although differences were eliminated at the five-eight cell stage. Development rates up to day 8 were similar in all experimental groups, being significantly lower than those in fresh controls. Only oocytes vitrified after IVM were able to give blastociysts. The morphological alterations observed can be responsible for compromised development. More research is needed to explain the low survival rates of the bovine oocyte after vitrification and warming.  相似文献   

18.
Lj X  Su L  Li Y  Ji W  Dinnyés A 《Theriogenology》2002,58(7):1253-1260
The objective of this study was to provide a simple cryopreservation method for oocytes from Yunnan Yellow Cattle and facilitate preservation efforts in this native Chinese breed, which is threatened by agricultural modernization. Cumulus-oocyte complexes (COCs) were collected from slaughterhouse ovaries and matured in vitro for 22-24 h, then selected for cryopreservation. Vitrification in open pulled straws (OPS) or in microdrops on a cooled metal surface (solid surface vitrification, SSV) was compared. The OPS vitrification solution consisted of 20% ethylene glycol (EG) and 20% DMSO. The SSV solution was a mixture of 35% EG, 5% polyvinyl-pyrrolidon (PVP) and 0.4 M trehalose. Vitrified and warmed oocytes were either fertilized in vitro or parthenogenetically activated. The rates of cleavage and development to blastocysts of fertilized oocytes following OPS versus SSV were not statistically different (38.3 and 12.5% versus 35.8 and 6.0%, respectively). The corresponding rates of parthenogenetic development to blastocysts were also not different (8.2 versus 3.5%, respectively). Development to blastocysts of non-vitrified controls following fertilization was significantly higher than that of the vitrified oocytes (22.6%, P < 0.05). These results demonstrate for the first time, that although both OPS and SSV procedures reduced embryonic development, Yunnan Yellow Cattle oocytes are capable of developing to blastocysts following cryopreservation.  相似文献   

19.
Different parameters likely to influence the survival of bovine oocytes after a vitrification procedure were evaluated: oocyte meiotic stage, cycloheximide treatment at the beginning or the end of maturation, and three vitrification procedures using conventional straws, open pulled straws (OPS), or microdrops. For each procedure a mixture of cryoprotectants (25% ethylene glycol and 25% glycerol) was used. After the oocytes were warmed and subjected to in vitro maturation and fertilization, the number that developed into blastocysts was determined. Results show that cryoprotectant exposure reduced embryo development and that cycloheximide treatment had no beneficial effect on oocytes vitrified in conventional straws. Among the three vitrification procedures, only the OPS method yielded blastocysts (approximately 3% of vitrified oocytes) irrespective of their initial meiotic stage. This result highlights the major influence of the cooling rate in an oocyte vitrification protocol.  相似文献   

20.
Cryopreservation of immature oocytes at germinal vesicle (GV) stage would provide a readily available source of oocytes for use in research and allow experiments to be performed irrespective of seasonality or other constraints. This study was designed to evaluate the recovery, viability, maturation status, fertilization events and subsequent development of ovine oocytes vitrified at GV stage using solid surface vitrification (SSV). Cumulus oocyte complexes (COCs) obtained from mature ewes were randomly divided into three groups (1) SSV (oocytes were vitrified using SSV), (2) EXP (oocytes were exposed to vitrification and warming solutions without vitrification) or (3) Untreated (control). Following vitrification and warming, viable oocytes were matured in vitro for 24h. After that, nuclear maturation was evaluated using orcein staining. Matured oocytes were fertilized and cultured in vitro for 7days. Following SSV, 75.7% 143/189 oocytes were recovered. Of those oocytes recovered 74.8%, 107/143 were morphologically normal (viable). Frequencies of in vitro maturation were significantly (P<0.01) decreased in SSV and EXP groups as compared to control. In vitro fertilization rates were significantly (P<0.01) decreased in SSV (39.3%) group as compared to EXP (56.4%) and control (64.7%) groups. Cleavage at 48h post insemination (pi) and development to the blastocyst stage on day 7 pi were significantly (P<0.001) decreased in SSV oocytes as compared to EXP and control groups. In conclusion, immature ovine oocytes vitrified using SSV as a simple and rapid procedure can survive and subsequently be matured, fertilized and cultured in vitro up to the blastocyst stage, although the frequency of development is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号