首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

2.
Root herbivores and plant mutualists, such as arbuscular mycorrhizal fungi (AMF), have a significant effect on the structure and dynamic of plant communities. Nevertheless, the interactions between the two groups of organisms in natural ecosystems are far from understood. We carried out an inoculation experiment to examine the effect of two root herbivores, Pratylenchus penetrans and P. dunensis (Nematoda), on the composition of the AMF communities associated with two populations of the dune grass Ammophila arenaria. The outcome of the interaction in terms of plant and nematode performance was also analyzed. The total percentage of AMF colonization was not affected by the presence of root-feeders, but they did alter the composition of the AMF communities inside the roots. These changes were dependent on the root-feeder species and the original AMF community: the most severe alterations were observed in the mycorrhizal plants from Wales attacked by P. penetrans. Plant growth was impaired in plants from Wales inoculated with AMF and P. dunensis, which suggests a highly species-specific synergistic interaction with negative consequences for the plant. Root infection by the nematodes was reduced in all mycorrhizal plants when compared to non-mycorrhizal plants. However, a significant reduction of the final number of nematodes was observed only in the mycorrhizal plants from one population.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi can indirectly affect insect herbivore performance by altering traits in their host plant. Typically, generalist herbivores are negatively affected by AM fungi, whereas specialists are positively affected. This is thought to be caused by differential abilities of specialists and generalists to tolerate and/or exploit plant secondary compounds, the prevalence of which may be related to mycorrhizal colonization. We performed a feeding experiment in which specialist sunflower beetle larvae (Zygogramma exclamationis Fabricius, Chrysomelidae) were fed on mycorrhizal or nonmycorrhizal common annual sunflower plants (Helianthus annuus L., Asteraceae). To determine the indirect effects of AM fungi on the sunflower beetle larvae, we measured insect survival and relative growth rate. We also measured leaf area eaten, which allowed relative growth rate to be broken down into two components: relative consumption rate and efficiency of conversion of ingested food. Contrary to several previous studies, we detected no indirect effects of mycorrhizal fungi on larval survival or on relative growth rate or its components. Small effect sizes suggest that this is nonsignificant biologically, as well as statistically, rather than merely an issue of statistical power. Our results support an emerging view that indirect effects of mycorrhizal fungi on insect herbivores may be complex and idiosyncratic. We suggest that future research should emphasize the effects of mycorrhizal fungi on individual plant traits and how these interact to affect insect performance.  相似文献   

4.
张宇亭  朱敏  线岩相洼  申鸿  赵建  郭涛 《生态学报》2012,32(22):7091-7101
在温室盆栽条件下,分别模拟单作、间作和尼龙网分隔种植,比较接种丛枝菌根(arbuscular mycorrhizal, AM)真菌Glomus intraradicesGlomus mosseae对菌根植物玉米和非菌根植物油菜生长和磷吸收状况的影响,并分析土壤中各无机磷组分的变化。结果发现,接种AM真菌可以促进土壤中难溶性磷(Ca10-P和O-P)向有效态磷转化,并显著降低总无机磷含量 (P<0.05),显著提高菌根植物玉米的生物量和磷吸收量(P<0.05),特别是在间作体系中使玉米的磷营养竞争比率显著提高了45.0%-104.1% (P<0.05),显著降低了油菜的生物量和磷吸收量(P<0.05),从而增强了了菌根植物的竞争优势,降低了非菌根植物与菌根植物的共存能力。揭示了石灰性土壤中AM真菌对植物物种多样性的影响,有助于更加全面地理解AM真菌在农业生态系统中的作用。  相似文献   

5.
1. While both arbuscular mycorrhizal (AM) fungi and plant and insect genotype are well known to influence plant and herbivore growth and performance, information is lacking on how these factors jointly influence the relationship between plants and their natural herbivores. 2. The aim of the present study was to investigate how a natural community of arbuscular mycorrhizal fungi affects the growth of the perennial herb Plantago lanceolata L. (Plantaginaceae), as well as its interaction with the Glanville fritillary butterfly [Melitaea cinxia L. (Nymphalidae)]. For this, a multifactorial experiment was conducted using plant lines originating from multiple plant populations in the Åland Islands, Finland, grown either with or without mycorrhizal fungi. For a subset of plant lines, the impact of mycorrhizal inoculation, plant line, and larval family on the performance of M. cinxia larvae were tested. 3. Arbuscular mycorrhizal inoculation did not have a consistently positive or negative impact on plant growth or herbivore performance. Instead, plant genetic variation mediated the impact of arbuscular mycorrhizal fungi on plant growth, and both plant genetic variation and herbivore genetic variation mediated the response of the herbivore. For both the plant and insect, the impact of the arbuscular mycorrhizal community ranged from mutualistic to antagonistic. Overall, the present findings illustrate that genetic variation in response to mycorrhizal fungi may play a key role in the ecology and evolution of plant–insect interactions.  相似文献   

6.
7.
Samphire Hoe is a newly-created land platform comprising the sub-seabed material excavated during the construction of the Channel tunnel. It represents a unique resource where the arrival and establishment of arbuscular mycorrhizal fungi (AMF) within a sown plant community on a low nutrient substrate can be monitored. Arbuscular mycorrhizal fungi invasion was monitored in a number of ways: by assessing the degree of root colonisation within the roots of plants on the site, by using a successive trap culture technique to determine AMF species richness, and by using sterile substrate bins to determine the extent of wind-borne and rain-dispersed immigration of AMF propagules into the site. Levels of colonisation of indigenous plants by AMF were high in May–June (the pre-flowering phase of growth for many plants) reflecting the important role of the mycorrhizal symbiosis in dry, low nutrient soils. Twelve species of AMF were identified, representing a relatively high diversity for a recently deposited subsoil. An on-site experiment indicated that inoculum of AMF could enter the site within 8 months and that wind dispersal and/or rain were possible vectors. A field experiment compared the outplanting performance of commercially-produced Elymus pycnanthus seedlings (in a commercial compost with added nutrients) with seedlings produced in a low nutrient substrate and inoculated with AMF isolated from the site (a mixture of 5 species of Glomus) or left uninoculated. After 14 months in the field seedlings, inoculated with the indigenous AMF, had the same tiller production as commercially-produced plants, despite slower initial growth. In contrast, non-mycorrhizal controls grew very poorly with a greater frequency of plant mortality compared with the other treatments. Elymus seedlings inoculated with the indigenous AMF ultimately produced approximately seven times the mean number of seed spikes per surviving plant as commercially-produced seedlings and five times greater weight of seed spike. A phyto-microbial approach to the revegetation of nutrient-poor soils is proposed to stimulate plant successional processes as a economically-viable sustainable input for landscaping anthropogenic sites.  相似文献   

8.
Abstract

Recent work has demonstrated indirect effects between mycorrhizal fungi and insect herbivores and pollinators. The existence of indirect effects between mycorrhizal fungi and protection-for-food mutualists, such as extrafloral nectar-foraging ‘bodyguard ants’, is unknown. In this study, we examined the potential for indirect effects of arbuscular mycorrhizal fungi on aggressive ant bodyguards, mediated by changes in the expression of extrafloral nectaries of a shared host plant. We found that mycorrhizal plants grew larger and produced more extrafloral nectaries compared to their non-mycorrhizal counterparts. The difference in the number of nectaries between mycorrhizal and non-mycorrhizal plants, however, was too small to elicit differences in ant attendance. In spite of the lack of a significant indirect effect of mycorrhizal fungi on ant attendance, mycorrhizal plants suffered damage to a significantly greater proportion of their leaves compared to non-mycorrhizal plants. This result likely stems from other (non-ant-mediated) indirect effects of mycorrhizal fungi on herbivores.  相似文献   

9.
In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.  相似文献   

10.
Vierheilig H  Lerat S  Piché Y 《Mycorrhiza》2003,13(3):167-170
The arbuscular mycorrhizal (AM) non-host plants mustard, sugar beet, lupin and the AM host plant cucumber were used as test plants. Cucumber plants were grown either in the absence of the AM fungus (AMF) Glomus mosseae or in a split-root system, with one side mycorrhizal and one side non-mycorrhizal. Root exudates of the AM non-host plants, the non-mycorrhizal cucumber plants and the mycorrhizal and the non-mycorrhizal side of the split-root system of mycorrhizal cucumber plants were collected and applied to cucumber plants inoculated with the AMF. Root exudates of non-mycorrhizal cucumber plants showed a significant stimulatory effect on root colonization, whereas root exudates from the mycorrhizal and the non-mycorrhizal sides of a split-root system of a mycorrhizal cucumber plant did not show this stimulatory effect and were even slightly inhibitory. Root exudates of the two AM non-host plants mustard and sugar beet significantly reduced root colonization in cucumber plants, whereas no such effect was observed when root exudates of the AM non-host plant lupin were applied.  相似文献   

11.
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.  相似文献   

12.
Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (?66% & ?59%) while the biomass of the four remaining weed species was only slightly reduced (?20% to ?37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds.  相似文献   

13.
Summary Growth and mineral uptake of twenty-four tropical forage legumes and grasses were compared under glasshouse conditions in a sterile low P oxisol, one part inoculated and the other not inoculated with mycorrhizal fungi. Shoot and root dry weights and total uptake of P, N, K, Ca, and Mg of all the test plants were significantly increased by mycorrhizal inoculation. Mycorrhizal inoculation, with few exceptions, decreased the root/shoot ratio. Non-mycorrhizal plants contained always lower quantities of mineral elements than mycorrhizal plants. Plant species showed differences in percentage mycorrhizal root length and there was no correlation between percentage mycorrhizal infection and plant growth parameters. A great variation in dependence on mycorrhiza was observed among forage species. Total uptake of all elements by non-mycorrhizal legumes and uptake of P, N and K by non-mycorrhizal grasses correlated inversely with mycorrhizal dependency. Mycorrhizal plants of all species used significantly greater quantities of soil P than the nonmycorrhizal plants. Utilization of soil P by non-mycorrhizal plants was correlated inversely with mycorrhizal dependency.  相似文献   

14.
Cosme M  Stout MJ  Wurst S 《Mycorrhiza》2011,21(7):651-658
Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference–performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions.  相似文献   

15.
Arbuscular mycorrhizas (AM) are important for promoting the mineral nutrition, growth and survival of plants used to rehabilitate degraded areas. Clusia pusilla is an evergreen shrub which is tolerant of high irradiance, germinates readily and can be easily reproduced by cuttings. All these characteristics make this species useful in the recovery of deforested areas. The aim of this work was to explore the response of C. pusilla to AM in the field, in two types of soil: the shrubland soil in which the species naturally grows and in a soil of a riparian forest. Eight treatments were performed in each type of soil. The treatments consisted of a non-mycorrhizal control and mycorrhizal plants colonized by one of the three AM inocula tested in the presence or absence of triple superphosphate (150 kg ha-1). After 11 months of growth in the shrubland soil, C. pusilla seedlings showed an increase in height and dry weight in response to the fertilizer but not to mycorrhizas. In contrast, in the forest soil the arbuscular mycorrhizal fungi (AMF) effect was equivalent to the fertilizer effect, and the two effects interacted positively. The lack of response to AM in shrubland soil was caused by its high sand content, which hinders the retention of the inocula. Due to a higher clay content, the forest soil binds inocula more tightly than shrubland soil. In conclusion, C. pusilla appears to benefit greatly from the addition of AMF in forest soil, though it requires an additional P source for such benefits in shrubland soil. This P source must be organic so that phosphorus is not lost by leaching. Although the growth rate of this species is very low, its survival can be guaranteed with the application of AMF inocula together with P-fertilizer applied at a low rate.  相似文献   

16.
Many herbivorous insects feed on plant tissues as larvae but use other resources as adults. Adult nectar feeding is an important component of the diet of many adult herbivores, but few studies have compared adult and larval feeding for broad groups of insects. We compiled a data set of larval host use and adult nectar sources for 995 butterfly and moth species (Lepidoptera) in central Europe. Using a phylogenetic generalized least squares approach, we found that those Lepidoptera that fed on a wide range of plant species as larvae were also nectar feeding on a wide range of plant species as adults. Lepidoptera that lack functional mouthparts as adults used more plant species as larval hosts, on average, than did Lepidoptera with adult mouthparts. We found that 54% of Lepidoptera include their larval host as a nectar source. By creating null models that described the similarity between larval and adult nectar sources, we furthermore showed that Lepidoptera nectar feed on their larval host more than would be expected if they fed at random on available nectar sources. Despite nutritional differences between plant tissue and nectar, we show that there are similarities between adult and larval feeding in Lepidoptera. This suggests that either behavioral or digestive constraints are retained throughout the life cycle of holometabolous herbivores, which affects host breadth and identity.  相似文献   

17.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

18.
Andreas Kruess 《Oecologia》2002,130(4):563-569
Interactions between plants and their natural enemies are well studied, but investigations on the indirect interactions between plant enemies that simultaneously exploit a host plant are rare. Yet these plant-mediated interactions are important because they may affect not only the impact of plant antagonists on plant survival but may also influence the performance of the other plant exploiters. This study focused on the indirect effects of a systemic infection of creeping thistle, [irsium arvense (L.) Scop., with the necrotrophic fungus Phoma destructiva (Plowr.) on the phytophagous leaf beetle Cassida rubiginosa Müller, by examining egg deposition, food plant choice, and larval and pupal performance of the beetle. Thus, the results give a broader view than most other studies of plant-mediated effects of a pathogen on a phytophagous insect. Since both the beetle and the fungus are considered as agents for the biological control of C. arvense, the results are also of interest for applied ecology. Potted plants of C. arvense were inoculated with a conidiospore suspension of P. destructiva to cause a systemic infection of the plants. In a cage experiment, ovipositing females of C. rubiginosa showed a significant preference for healthy thistles. In dual-choice tests, adults of C. rubiginosa preferred leaf discs from healthy thistles over those from Phoma-infected thistles. The beetles also consumed significantly more leaf tissue from healthy than from infected plants. Development time from freshly hatched larvae until pupation was significantly longer for larvae fed on infected leaves. The weight of last-instar larvae and pupae was lower, and larval and pupal mortality was higher when larvae had been fed with infected compared to healthy leaves. Thus, the combined use of both potential biological control agents may be of lowered efficiency because (1) C. rubiginosa avoided infected thistles for both egg deposition and adult feeding and (2) Phoma infection negatively affected larval development and increased larval and pupal mortality of the beetle.  相似文献   

19.
Volatile organic compounds (VOCs) emitted by plant roots have important functions that can influence the rhizospheric environment. The aim of this study was to examine the effects of arbuscular mycorrhizal (AM) fungi on the profile of root VOCs. Sorghum (Sorghum bicolor) plants were grown in pots inoculated with either Glomus mosseae or Glomus intraradices, which formed mycorrhiza with the roots. Control plants were grown in pots inoculated with sterile inoculum and did not form mycorrhiza. Forty-four VOCs were determined using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS). Alkanes were the most abundant type of VOCs emitted by both mycorrhizal and non-mycorrhizal plants. Both the quantity and type of volatiles were dramatically altered by the presence of AM fungi, and these changes had species specificity. Compared with non-mycorrhizal plants, mycorrhizal plants emitted more alcohols, alkenes, ethers and acids but fewer linear-alkanes. The AM fungi also influenced the morphological traits of the host roots. The total root length and specific root length of mycorrhizal plants were significantly greater than those of non-mycorrhizal plants; however, both the incidence and length of root-hair were dramatically decreased. Our findings confirm that AM fungi can alter the profile of VOCs emitted by roots as well as the root morphology of sorghum plants, indicating that AM fungi have the potential to help plants adapt to and alter soil environments.  相似文献   

20.
In recent years, studies on arbuscular mycorrhizal fungi (AMF) have been revealing that the belowground symbiosis can influence the performance of aboveground herbivores and their natural enemies through its effects on the host plant. In this study, we tested whether the colonization of tomato plants by the arbuscular mycorrhizal fungus Rhizophagus irregularis (Syn. Glomus intraradices Schenk and Smith) (Glomeromycota: Glomeraceae) affects the performance of the zoophytophagous mirid bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Mycorrhizal colonization in tomato plants positively influenced the predator host-plant acceptance for feeding and oviposition, as well as nymphal survival and female weight. We hypothesize that AMF can modify mirid bug foraging behavior and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号